Metamath Proof Explorer


Theorem ang180lem3

Description: Lemma for ang180 . Since ang180lem1 shows that N is an integer and ang180lem2 shows that N is strictly between -u 2 and 1 , it follows that N e. { -u 1 , 0 } , and these two cases correspond to the two possible values for T . (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Hypotheses ang.1 F = x 0 , y 0 log y x
ang180lem1.2 T = log 1 1 A + log A 1 A + log A
ang180lem1.3 N = T i 2 π 1 2
Assertion ang180lem3 A A 0 A 1 T i π i π

Proof

Step Hyp Ref Expression
1 ang.1 F = x 0 , y 0 log y x
2 ang180lem1.2 T = log 1 1 A + log A 1 A + log A
3 ang180lem1.3 N = T i 2 π 1 2
4 1 2 3 ang180lem2 A A 0 A 1 2 < N N < 1
5 4 simprd A A 0 A 1 N < 1
6 1e0p1 1 = 0 + 1
7 5 6 breqtrdi A A 0 A 1 N < 0 + 1
8 1 2 3 ang180lem1 A A 0 A 1 N T i
9 8 simpld A A 0 A 1 N
10 0z 0
11 zleltp1 N 0 N 0 N < 0 + 1
12 9 10 11 sylancl A A 0 A 1 N 0 N < 0 + 1
13 7 12 mpbird A A 0 A 1 N 0
14 13 adantr A A 0 A 1 1 < N N 0
15 zlem1lt 0 N 0 N 0 1 < N
16 10 9 15 sylancr A A 0 A 1 0 N 0 1 < N
17 df-neg 1 = 0 1
18 17 breq1i 1 < N 0 1 < N
19 16 18 bitr4di A A 0 A 1 0 N 1 < N
20 19 biimpar A A 0 A 1 1 < N 0 N
21 9 zred A A 0 A 1 N
22 21 adantr A A 0 A 1 1 < N N
23 0re 0
24 letri3 N 0 N = 0 N 0 0 N
25 22 23 24 sylancl A A 0 A 1 1 < N N = 0 N 0 0 N
26 14 20 25 mpbir2and A A 0 A 1 1 < N N = 0
27 3 26 eqtr3id A A 0 A 1 1 < N T i 2 π 1 2 = 0
28 ax-1cn 1
29 simp1 A A 0 A 1 A
30 subcl 1 A 1 A
31 28 29 30 sylancr A A 0 A 1 1 A
32 simp3 A A 0 A 1 A 1
33 32 necomd A A 0 A 1 1 A
34 subeq0 1 A 1 A = 0 1 = A
35 28 29 34 sylancr A A 0 A 1 1 A = 0 1 = A
36 35 necon3bid A A 0 A 1 1 A 0 1 A
37 33 36 mpbird A A 0 A 1 1 A 0
38 31 37 reccld A A 0 A 1 1 1 A
39 31 37 recne0d A A 0 A 1 1 1 A 0
40 38 39 logcld A A 0 A 1 log 1 1 A
41 subcl A 1 A 1
42 29 28 41 sylancl A A 0 A 1 A 1
43 simp2 A A 0 A 1 A 0
44 42 29 43 divcld A A 0 A 1 A 1 A
45 subeq0 A 1 A 1 = 0 A = 1
46 29 28 45 sylancl A A 0 A 1 A 1 = 0 A = 1
47 46 necon3bid A A 0 A 1 A 1 0 A 1
48 32 47 mpbird A A 0 A 1 A 1 0
49 42 29 48 43 divne0d A A 0 A 1 A 1 A 0
50 44 49 logcld A A 0 A 1 log A 1 A
51 40 50 addcld A A 0 A 1 log 1 1 A + log A 1 A
52 logcl A A 0 log A
53 52 3adant3 A A 0 A 1 log A
54 51 53 addcld A A 0 A 1 log 1 1 A + log A 1 A + log A
55 2 54 eqeltrid A A 0 A 1 T
56 ax-icn i
57 56 a1i A A 0 A 1 i
58 ine0 i 0
59 58 a1i A A 0 A 1 i 0
60 55 57 59 divcld A A 0 A 1 T i
61 2cn 2
62 picn π
63 61 62 mulcli 2 π
64 63 a1i A A 0 A 1 2 π
65 2ne0 2 0
66 pire π
67 pipos 0 < π
68 66 67 gt0ne0ii π 0
69 61 62 65 68 mulne0i 2 π 0
70 69 a1i A A 0 A 1 2 π 0
71 60 64 70 divcld A A 0 A 1 T i 2 π
72 71 adantr A A 0 A 1 1 < N T i 2 π
73 halfcn 1 2
74 subeq0 T i 2 π 1 2 T i 2 π 1 2 = 0 T i 2 π = 1 2
75 72 73 74 sylancl A A 0 A 1 1 < N T i 2 π 1 2 = 0 T i 2 π = 1 2
76 27 75 mpbid A A 0 A 1 1 < N T i 2 π = 1 2
77 60 adantr A A 0 A 1 1 < N T i
78 63 a1i A A 0 A 1 1 < N 2 π
79 73 a1i A A 0 A 1 1 < N 1 2
80 69 a1i A A 0 A 1 1 < N 2 π 0
81 77 78 79 80 divmuld A A 0 A 1 1 < N T i 2 π = 1 2 2 π 1 2 = T i
82 76 81 mpbid A A 0 A 1 1 < N 2 π 1 2 = T i
83 63 61 65 divreci 2 π 2 = 2 π 1 2
84 62 61 65 divcan3i 2 π 2 = π
85 83 84 eqtr3i 2 π 1 2 = π
86 82 85 eqtr3di A A 0 A 1 1 < N T i = π
87 55 adantr A A 0 A 1 1 < N T
88 56 a1i A A 0 A 1 1 < N i
89 62 a1i A A 0 A 1 1 < N π
90 58 a1i A A 0 A 1 1 < N i 0
91 87 88 89 90 divmuld A A 0 A 1 1 < N T i = π i π = T
92 86 91 mpbid A A 0 A 1 1 < N i π = T
93 92 eqcomd A A 0 A 1 1 < N T = i π
94 93 olcd A A 0 A 1 1 < N T = i π T = i π
95 62 56 mulneg1i π i = π i
96 62 56 mulcomi π i = i π
97 96 negeqi π i = i π
98 95 97 eqtri π i = i π
99 73 63 mulneg1i 1 2 2 π = 1 2 2 π
100 28 61 65 divcan1i 1 2 2 = 1
101 100 oveq1i 1 2 2 π = 1 π
102 73 61 62 mulassi 1 2 2 π = 1 2 2 π
103 62 mulid2i 1 π = π
104 101 102 103 3eqtr3i 1 2 2 π = π
105 104 negeqi 1 2 2 π = π
106 99 105 eqtri 1 2 2 π = π
107 28 73 negsubdii 1 1 2 = - 1 + 1 2
108 1mhlfehlf 1 1 2 = 1 2
109 108 negeqi 1 1 2 = 1 2
110 107 109 eqtr3i - 1 + 1 2 = 1 2
111 simpr A A 0 A 1 1 = N 1 = N
112 111 3 eqtrdi A A 0 A 1 1 = N 1 = T i 2 π 1 2
113 112 oveq1d A A 0 A 1 1 = N - 1 + 1 2 = T i 2 π - 1 2 + 1 2
114 110 113 eqtr3id A A 0 A 1 1 = N 1 2 = T i 2 π - 1 2 + 1 2
115 npcan T i 2 π 1 2 T i 2 π - 1 2 + 1 2 = T i 2 π
116 71 73 115 sylancl A A 0 A 1 T i 2 π - 1 2 + 1 2 = T i 2 π
117 116 adantr A A 0 A 1 1 = N T i 2 π - 1 2 + 1 2 = T i 2 π
118 114 117 eqtrd A A 0 A 1 1 = N 1 2 = T i 2 π
119 118 oveq1d A A 0 A 1 1 = N 1 2 2 π = T i 2 π 2 π
120 106 119 eqtr3id A A 0 A 1 1 = N π = T i 2 π 2 π
121 60 64 70 divcan1d A A 0 A 1 T i 2 π 2 π = T i
122 121 adantr A A 0 A 1 1 = N T i 2 π 2 π = T i
123 120 122 eqtrd A A 0 A 1 1 = N π = T i
124 123 oveq1d A A 0 A 1 1 = N π i = T i i
125 98 124 eqtr3id A A 0 A 1 1 = N i π = T i i
126 55 57 59 divcan1d A A 0 A 1 T i i = T
127 126 adantr A A 0 A 1 1 = N T i i = T
128 125 127 eqtr2d A A 0 A 1 1 = N T = i π
129 128 orcd A A 0 A 1 1 = N T = i π T = i π
130 df-2 2 = 1 + 1
131 130 negeqi 2 = 1 + 1
132 negdi2 1 1 1 + 1 = - 1 - 1
133 28 28 132 mp2an 1 + 1 = - 1 - 1
134 131 133 eqtri 2 = - 1 - 1
135 4 simpld A A 0 A 1 2 < N
136 134 135 eqbrtrrid A A 0 A 1 - 1 - 1 < N
137 neg1z 1
138 zlem1lt 1 N 1 N - 1 - 1 < N
139 137 9 138 sylancr A A 0 A 1 1 N - 1 - 1 < N
140 136 139 mpbird A A 0 A 1 1 N
141 neg1rr 1
142 leloe 1 N 1 N 1 < N 1 = N
143 141 21 142 sylancr A A 0 A 1 1 N 1 < N 1 = N
144 140 143 mpbid A A 0 A 1 1 < N 1 = N
145 94 129 144 mpjaodan A A 0 A 1 T = i π T = i π
146 2 ovexi T V
147 146 elpr T i π i π T = i π T = i π
148 145 147 sylibr A A 0 A 1 T i π i π