Metamath Proof Explorer


Theorem ang180lem4

Description: Lemma for ang180 . Reduce the statement to one variable. (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Hypothesis ang.1 F = x 0 , y 0 log y x
Assertion ang180lem4 A A 0 A 1 1 A F 1 + A F A 1 + 1 F A π π

Proof

Step Hyp Ref Expression
1 ang.1 F = x 0 , y 0 log y x
2 1cnd A A 0 A 1 1
3 simp1 A A 0 A 1 A
4 2 3 subcld A A 0 A 1 1 A
5 simp3 A A 0 A 1 A 1
6 5 necomd A A 0 A 1 1 A
7 2 3 6 subne0d A A 0 A 1 1 A 0
8 ax-1ne0 1 0
9 8 a1i A A 0 A 1 1 0
10 1 4 7 2 9 angvald A A 0 A 1 1 A F 1 = log 1 1 A
11 simp2 A A 0 A 1 A 0
12 3 2 subcld A A 0 A 1 A 1
13 3 2 5 subne0d A A 0 A 1 A 1 0
14 1 3 11 12 13 angvald A A 0 A 1 A F A 1 = log A 1 A
15 10 14 oveq12d A A 0 A 1 1 A F 1 + A F A 1 = log 1 1 A + log A 1 A
16 2 4 7 divcld A A 0 A 1 1 1 A
17 4 7 recne0d A A 0 A 1 1 1 A 0
18 16 17 logcld A A 0 A 1 log 1 1 A
19 12 3 11 divcld A A 0 A 1 A 1 A
20 12 3 13 11 divne0d A A 0 A 1 A 1 A 0
21 19 20 logcld A A 0 A 1 log A 1 A
22 18 21 imaddd A A 0 A 1 log 1 1 A + log A 1 A = log 1 1 A + log A 1 A
23 15 22 eqtr4d A A 0 A 1 1 A F 1 + A F A 1 = log 1 1 A + log A 1 A
24 1 2 9 3 11 angvald A A 0 A 1 1 F A = log A 1
25 3 div1d A A 0 A 1 A 1 = A
26 25 fveq2d A A 0 A 1 log A 1 = log A
27 26 fveq2d A A 0 A 1 log A 1 = log A
28 24 27 eqtrd A A 0 A 1 1 F A = log A
29 23 28 oveq12d A A 0 A 1 1 A F 1 + A F A 1 + 1 F A = log 1 1 A + log A 1 A + log A
30 18 21 addcld A A 0 A 1 log 1 1 A + log A 1 A
31 3 11 logcld A A 0 A 1 log A
32 30 31 imaddd A A 0 A 1 log 1 1 A + log A 1 A + log A = log 1 1 A + log A 1 A + log A
33 29 32 eqtr4d A A 0 A 1 1 A F 1 + A F A 1 + 1 F A = log 1 1 A + log A 1 A + log A
34 eqid log 1 1 A + log A 1 A + log A = log 1 1 A + log A 1 A + log A
35 eqid log 1 1 A + log A 1 A + log A i 2 π 1 2 = log 1 1 A + log A 1 A + log A i 2 π 1 2
36 1 34 35 ang180lem3 A A 0 A 1 log 1 1 A + log A 1 A + log A i π i π
37 fveq2 log 1 1 A + log A 1 A + log A = i π log 1 1 A + log A 1 A + log A = i π
38 ax-icn i
39 picn π
40 38 39 mulcli i π
41 40 imnegi i π = i π
42 40 addid2i 0 + i π = i π
43 42 fveq2i 0 + i π = i π
44 0re 0
45 pire π
46 44 45 crimi 0 + i π = π
47 43 46 eqtr3i i π = π
48 47 negeqi i π = π
49 41 48 eqtri i π = π
50 37 49 eqtrdi log 1 1 A + log A 1 A + log A = i π log 1 1 A + log A 1 A + log A = π
51 fveq2 log 1 1 A + log A 1 A + log A = i π log 1 1 A + log A 1 A + log A = i π
52 51 47 eqtrdi log 1 1 A + log A 1 A + log A = i π log 1 1 A + log A 1 A + log A = π
53 50 52 orim12i log 1 1 A + log A 1 A + log A = i π log 1 1 A + log A 1 A + log A = i π log 1 1 A + log A 1 A + log A = π log 1 1 A + log A 1 A + log A = π
54 ovex log 1 1 A + log A 1 A + log A V
55 54 elpr log 1 1 A + log A 1 A + log A i π i π log 1 1 A + log A 1 A + log A = i π log 1 1 A + log A 1 A + log A = i π
56 fvex log 1 1 A + log A 1 A + log A V
57 56 elpr log 1 1 A + log A 1 A + log A π π log 1 1 A + log A 1 A + log A = π log 1 1 A + log A 1 A + log A = π
58 53 55 57 3imtr4i log 1 1 A + log A 1 A + log A i π i π log 1 1 A + log A 1 A + log A π π
59 36 58 syl A A 0 A 1 log 1 1 A + log A 1 A + log A π π
60 33 59 eqeltrd A A 0 A 1 1 A F 1 + A F A 1 + 1 F A π π