Step |
Hyp |
Ref |
Expression |
1 |
|
ang.1 |
|
2 |
|
simp1l |
|
3 |
|
1cnd |
|
4 |
|
simp2l |
|
5 |
|
simp1r |
|
6 |
4 2 5
|
divcld |
|
7 |
2 3 6
|
subdid |
|
8 |
2
|
mulid1d |
|
9 |
4 2 5
|
divcan2d |
|
10 |
8 9
|
oveq12d |
|
11 |
7 10
|
eqtrd |
|
12 |
11 8
|
oveq12d |
|
13 |
3 6
|
subcld |
|
14 |
|
simp3 |
|
15 |
14
|
necomd |
|
16 |
4 2 5 15
|
divne1d |
|
17 |
16
|
necomd |
|
18 |
3 6 17
|
subne0d |
|
19 |
|
ax-1ne0 |
|
20 |
19
|
a1i |
|
21 |
1
|
angcan |
|
22 |
13 18 3 20 2 5 21
|
syl222anc |
|
23 |
12 22
|
eqtr3d |
|
24 |
2 6 3
|
subdid |
|
25 |
9 8
|
oveq12d |
|
26 |
24 25
|
eqtrd |
|
27 |
9 26
|
oveq12d |
|
28 |
|
simp2r |
|
29 |
4 2 28 5
|
divne0d |
|
30 |
6 3
|
subcld |
|
31 |
6 3 16
|
subne0d |
|
32 |
1
|
angcan |
|
33 |
6 29 30 31 2 5 32
|
syl222anc |
|
34 |
27 33
|
eqtr3d |
|
35 |
23 34
|
oveq12d |
|
36 |
8 9
|
oveq12d |
|
37 |
1
|
angcan |
|
38 |
3 20 6 29 2 5 37
|
syl222anc |
|
39 |
36 38
|
eqtr3d |
|
40 |
35 39
|
oveq12d |
|
41 |
1
|
ang180lem4 |
|
42 |
6 29 16 41
|
syl3anc |
|
43 |
40 42
|
eqeltrd |
|