Metamath Proof Explorer


Theorem ang180lem5

Description: Lemma for ang180 : Reduce the statement to two variables. (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Hypothesis ang.1 F = x 0 , y 0 log y x
Assertion ang180lem5 A A 0 B B 0 A B A B F A + B F B A + A F B π π

Proof

Step Hyp Ref Expression
1 ang.1 F = x 0 , y 0 log y x
2 simp1l A A 0 B B 0 A B A
3 1cnd A A 0 B B 0 A B 1
4 simp2l A A 0 B B 0 A B B
5 simp1r A A 0 B B 0 A B A 0
6 4 2 5 divcld A A 0 B B 0 A B B A
7 2 3 6 subdid A A 0 B B 0 A B A 1 B A = A 1 A B A
8 2 mulid1d A A 0 B B 0 A B A 1 = A
9 4 2 5 divcan2d A A 0 B B 0 A B A B A = B
10 8 9 oveq12d A A 0 B B 0 A B A 1 A B A = A B
11 7 10 eqtrd A A 0 B B 0 A B A 1 B A = A B
12 11 8 oveq12d A A 0 B B 0 A B A 1 B A F A 1 = A B F A
13 3 6 subcld A A 0 B B 0 A B 1 B A
14 simp3 A A 0 B B 0 A B A B
15 14 necomd A A 0 B B 0 A B B A
16 4 2 5 15 divne1d A A 0 B B 0 A B B A 1
17 16 necomd A A 0 B B 0 A B 1 B A
18 3 6 17 subne0d A A 0 B B 0 A B 1 B A 0
19 ax-1ne0 1 0
20 19 a1i A A 0 B B 0 A B 1 0
21 1 angcan 1 B A 1 B A 0 1 1 0 A A 0 A 1 B A F A 1 = 1 B A F 1
22 13 18 3 20 2 5 21 syl222anc A A 0 B B 0 A B A 1 B A F A 1 = 1 B A F 1
23 12 22 eqtr3d A A 0 B B 0 A B A B F A = 1 B A F 1
24 2 6 3 subdid A A 0 B B 0 A B A B A 1 = A B A A 1
25 9 8 oveq12d A A 0 B B 0 A B A B A A 1 = B A
26 24 25 eqtrd A A 0 B B 0 A B A B A 1 = B A
27 9 26 oveq12d A A 0 B B 0 A B A B A F A B A 1 = B F B A
28 simp2r A A 0 B B 0 A B B 0
29 4 2 28 5 divne0d A A 0 B B 0 A B B A 0
30 6 3 subcld A A 0 B B 0 A B B A 1
31 6 3 16 subne0d A A 0 B B 0 A B B A 1 0
32 1 angcan B A B A 0 B A 1 B A 1 0 A A 0 A B A F A B A 1 = B A F B A 1
33 6 29 30 31 2 5 32 syl222anc A A 0 B B 0 A B A B A F A B A 1 = B A F B A 1
34 27 33 eqtr3d A A 0 B B 0 A B B F B A = B A F B A 1
35 23 34 oveq12d A A 0 B B 0 A B A B F A + B F B A = 1 B A F 1 + B A F B A 1
36 8 9 oveq12d A A 0 B B 0 A B A 1 F A B A = A F B
37 1 angcan 1 1 0 B A B A 0 A A 0 A 1 F A B A = 1 F B A
38 3 20 6 29 2 5 37 syl222anc A A 0 B B 0 A B A 1 F A B A = 1 F B A
39 36 38 eqtr3d A A 0 B B 0 A B A F B = 1 F B A
40 35 39 oveq12d A A 0 B B 0 A B A B F A + B F B A + A F B = 1 B A F 1 + B A F B A 1 + 1 F B A
41 1 ang180lem4 B A B A 0 B A 1 1 B A F 1 + B A F B A 1 + 1 F B A π π
42 6 29 16 41 syl3anc A A 0 B B 0 A B 1 B A F 1 + B A F B A 1 + 1 F B A π π
43 40 42 eqeltrd A A 0 B B 0 A B A B F A + B F B A + A F B π π