Metamath Proof Explorer


Theorem angcan

Description: Cancel a constant multiplier in the angle function. (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Hypothesis ang.1 F = x 0 , y 0 log y x
Assertion angcan A A 0 B B 0 C C 0 C A F C B = A F B

Proof

Step Hyp Ref Expression
1 ang.1 F = x 0 , y 0 log y x
2 simp2l A A 0 B B 0 C C 0 B
3 simp1l A A 0 B B 0 C C 0 A
4 simp3l A A 0 B B 0 C C 0 C
5 simp1r A A 0 B B 0 C C 0 A 0
6 simp3r A A 0 B B 0 C C 0 C 0
7 2 3 4 5 6 divcan5d A A 0 B B 0 C C 0 C B C A = B A
8 7 fveq2d A A 0 B B 0 C C 0 log C B C A = log B A
9 8 fveq2d A A 0 B B 0 C C 0 log C B C A = log B A
10 4 3 mulcld A A 0 B B 0 C C 0 C A
11 4 3 6 5 mulne0d A A 0 B B 0 C C 0 C A 0
12 4 2 mulcld A A 0 B B 0 C C 0 C B
13 simp2r A A 0 B B 0 C C 0 B 0
14 4 2 6 13 mulne0d A A 0 B B 0 C C 0 C B 0
15 1 angval C A C A 0 C B C B 0 C A F C B = log C B C A
16 10 11 12 14 15 syl22anc A A 0 B B 0 C C 0 C A F C B = log C B C A
17 1 angval A A 0 B B 0 A F B = log B A
18 17 3adant3 A A 0 B B 0 C C 0 A F B = log B A
19 9 16 18 3eqtr4d A A 0 B B 0 C C 0 C A F C B = A F B