Metamath Proof Explorer


Theorem angcld

Description: The (signed) angle between two vectors is in ( -upi (,] pi ) . Deduction form. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses ang.1 F=x0,y0logyx
angcld.1 φX
angcld.2 φX0
angcld.3 φY
angcld.4 φY0
Assertion angcld φXFYππ

Proof

Step Hyp Ref Expression
1 ang.1 F=x0,y0logyx
2 angcld.1 φX
3 angcld.2 φX0
4 angcld.3 φY
5 angcld.4 φY0
6 1 2 3 4 5 angvald φXFY=logYX
7 4 2 3 divcld φYX
8 4 2 5 3 divne0d φYX0
9 7 8 logimclad φlogYXππ
10 6 9 eqeltrd φXFYππ