Metamath Proof Explorer


Theorem angcld

Description: The (signed) angle between two vectors is in ( -upi (,] pi ) . Deduction form. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses ang.1 F = x 0 , y 0 log y x
angcld.1 φ X
angcld.2 φ X 0
angcld.3 φ Y
angcld.4 φ Y 0
Assertion angcld φ X F Y π π

Proof

Step Hyp Ref Expression
1 ang.1 F = x 0 , y 0 log y x
2 angcld.1 φ X
3 angcld.2 φ X 0
4 angcld.3 φ Y
5 angcld.4 φ Y 0
6 1 2 3 4 5 angvald φ X F Y = log Y X
7 4 2 3 divcld φ Y X
8 4 2 5 3 divne0d φ Y X 0
9 7 8 logimclad φ log Y X π π
10 6 9 eqeltrd φ X F Y π π