Metamath Proof Explorer


Theorem angneg

Description: Cancel a negative sign in the angle function. (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Hypothesis ang.1 F = x 0 , y 0 log y x
Assertion angneg A A 0 B B 0 A F B = A F B

Proof

Step Hyp Ref Expression
1 ang.1 F = x 0 , y 0 log y x
2 mulm1 A -1 A = A
3 2 ad2antrr A A 0 B B 0 -1 A = A
4 mulm1 B -1 B = B
5 4 ad2antrl A A 0 B B 0 -1 B = B
6 3 5 oveq12d A A 0 B B 0 -1 A F -1 B = A F B
7 neg1cn 1
8 neg1ne0 1 0
9 7 8 pm3.2i 1 1 0
10 1 angcan A A 0 B B 0 1 1 0 -1 A F -1 B = A F B
11 9 10 mp3an3 A A 0 B B 0 -1 A F -1 B = A F B
12 6 11 eqtr3d A A 0 B B 0 A F B = A F B