Step |
Hyp |
Ref |
Expression |
1 |
|
angpieqvd.angdef |
|
2 |
|
angpieqvd.A |
|
3 |
|
angpieqvd.B |
|
4 |
|
angpieqvd.C |
|
5 |
|
angpieqvd.AneB |
|
6 |
|
angpieqvd.BneC |
|
7 |
1 2 3 4 5 6
|
angpieqvdlem2 |
|
8 |
7
|
biimpar |
|
9 |
2
|
adantr |
|
10 |
3
|
adantr |
|
11 |
4
|
adantr |
|
12 |
5
|
adantr |
|
13 |
1 2 3 4 5 6
|
angpined |
|
14 |
13
|
imp |
|
15 |
9 10 11 12 14
|
angpieqvdlem |
|
16 |
8 15
|
mpbid |
|
17 |
4 3
|
subcld |
|
18 |
17
|
adantr |
|
19 |
4 2
|
subcld |
|
20 |
19
|
adantr |
|
21 |
14
|
necomd |
|
22 |
11 9 21
|
subne0d |
|
23 |
18 20 22
|
divcan1d |
|
24 |
23
|
eqcomd |
|
25 |
18 20 22
|
divcld |
|
26 |
9 10 11 25
|
affineequiv |
|
27 |
24 26
|
mpbird |
|
28 |
|
oveq1 |
|
29 |
|
oveq2 |
|
30 |
29
|
oveq1d |
|
31 |
28 30
|
oveq12d |
|
32 |
31
|
rspceeqv |
|
33 |
16 27 32
|
syl2anc |
|
34 |
33
|
ex |
|
35 |
2
|
adantr |
|
36 |
3
|
adantr |
|
37 |
4
|
adantr |
|
38 |
|
simpr |
|
39 |
|
elioore |
|
40 |
|
recn |
|
41 |
38 39 40
|
3syl |
|
42 |
35 36 37 41
|
affineequiv |
|
43 |
|
simp3 |
|
44 |
17
|
3ad2ant1 |
|
45 |
41
|
3adant3 |
|
46 |
19
|
3ad2ant1 |
|
47 |
6
|
necomd |
|
48 |
4 3 47
|
subne0d |
|
49 |
48
|
3ad2ant1 |
|
50 |
43 49
|
eqnetrrd |
|
51 |
45 46 50
|
mulne0bbd |
|
52 |
44 45 46 51
|
divmul3d |
|
53 |
43 52
|
mpbird |
|
54 |
|
simp2 |
|
55 |
53 54
|
eqeltrd |
|
56 |
2
|
3ad2ant1 |
|
57 |
3
|
3ad2ant1 |
|
58 |
4
|
3ad2ant1 |
|
59 |
5
|
3ad2ant1 |
|
60 |
58 56 51
|
subne0ad |
|
61 |
60
|
necomd |
|
62 |
56 57 58 59 61
|
angpieqvdlem |
|
63 |
55 62
|
mpbird |
|
64 |
6
|
3ad2ant1 |
|
65 |
1 56 57 58 59 64
|
angpieqvdlem2 |
|
66 |
63 65
|
mpbid |
|
67 |
66
|
3expia |
|
68 |
42 67
|
sylbid |
|
69 |
68
|
rexlimdva |
|
70 |
34 69
|
impbid |
|