Step |
Hyp |
Ref |
Expression |
1 |
|
angpieqvdlem.A |
|
2 |
|
angpieqvdlem.B |
|
3 |
|
angpieqvdlem.C |
|
4 |
|
angpieqvdlem.AneB |
|
5 |
|
angpieqvdlem.AneC |
|
6 |
3 2
|
subcld |
|
7 |
1 2
|
subcld |
|
8 |
1 2 4
|
subne0d |
|
9 |
6 7 8
|
divcld |
|
10 |
9
|
negcld |
|
11 |
|
1cnd |
|
12 |
5
|
necomd |
|
13 |
3 1 2 12
|
subneintr2d |
|
14 |
6 7 8 13
|
divne1d |
|
15 |
9 11 14
|
negned |
|
16 |
10 15
|
xov1plusxeqvd |
|
17 |
6 7 8
|
divnegd |
|
18 |
3 2
|
negsubdi2d |
|
19 |
18
|
oveq1d |
|
20 |
17 19
|
eqtrd |
|
21 |
7 8
|
dividd |
|
22 |
21
|
oveq1d |
|
23 |
7 6 7 8
|
divsubdird |
|
24 |
11 9
|
negsubd |
|
25 |
22 23 24
|
3eqtr4rd |
|
26 |
1 3 2
|
nnncan2d |
|
27 |
26
|
oveq1d |
|
28 |
25 27
|
eqtrd |
|
29 |
20 28
|
oveq12d |
|
30 |
2 3
|
subcld |
|
31 |
1 3
|
subcld |
|
32 |
1 3 5
|
subne0d |
|
33 |
30 31 7 32 8
|
divcan7d |
|
34 |
2 3 1 3 5
|
div2subd |
|
35 |
29 33 34
|
3eqtrrd |
|
36 |
35
|
eleq1d |
|
37 |
16 36
|
bitr4d |
|