Metamath Proof Explorer


Theorem angpieqvdlem

Description: Equivalence used in the proof of angpieqvd . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses angpieqvdlem.A φ A
angpieqvdlem.B φ B
angpieqvdlem.C φ C
angpieqvdlem.AneB φ A B
angpieqvdlem.AneC φ A C
Assertion angpieqvdlem φ C B A B + C B C A 0 1

Proof

Step Hyp Ref Expression
1 angpieqvdlem.A φ A
2 angpieqvdlem.B φ B
3 angpieqvdlem.C φ C
4 angpieqvdlem.AneB φ A B
5 angpieqvdlem.AneC φ A C
6 3 2 subcld φ C B
7 1 2 subcld φ A B
8 1 2 4 subne0d φ A B 0
9 6 7 8 divcld φ C B A B
10 9 negcld φ C B A B
11 1cnd φ 1
12 5 necomd φ C A
13 3 1 2 12 subneintr2d φ C B A B
14 6 7 8 13 divne1d φ C B A B 1
15 9 11 14 negned φ C B A B 1
16 10 15 xov1plusxeqvd φ C B A B + C B A B 1 + C B A B 0 1
17 6 7 8 divnegd φ C B A B = C B A B
18 3 2 negsubdi2d φ C B = B C
19 18 oveq1d φ C B A B = B C A B
20 17 19 eqtrd φ C B A B = B C A B
21 7 8 dividd φ A B A B = 1
22 21 oveq1d φ A B A B C B A B = 1 C B A B
23 7 6 7 8 divsubdird φ A - B - C B A B = A B A B C B A B
24 11 9 negsubd φ 1 + C B A B = 1 C B A B
25 22 23 24 3eqtr4rd φ 1 + C B A B = A - B - C B A B
26 1 3 2 nnncan2d φ A - B - C B = A C
27 26 oveq1d φ A - B - C B A B = A C A B
28 25 27 eqtrd φ 1 + C B A B = A C A B
29 20 28 oveq12d φ C B A B 1 + C B A B = B C A B A C A B
30 2 3 subcld φ B C
31 1 3 subcld φ A C
32 1 3 5 subne0d φ A C 0
33 30 31 7 32 8 divcan7d φ B C A B A C A B = B C A C
34 2 3 1 3 5 div2subd φ B C A C = C B C A
35 29 33 34 3eqtrrd φ C B C A = C B A B 1 + C B A B
36 35 eleq1d φ C B C A 0 1 C B A B 1 + C B A B 0 1
37 16 36 bitr4d φ C B A B + C B C A 0 1