Metamath Proof Explorer


Theorem angpieqvdlem2

Description: Equivalence used in angpieqvd . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses angpieqvd.angdef F = x 0 , y 0 log y x
angpieqvd.A φ A
angpieqvd.B φ B
angpieqvd.C φ C
angpieqvd.AneB φ A B
angpieqvd.BneC φ B C
Assertion angpieqvdlem2 φ C B A B + A B F C B = π

Proof

Step Hyp Ref Expression
1 angpieqvd.angdef F = x 0 , y 0 log y x
2 angpieqvd.A φ A
3 angpieqvd.B φ B
4 angpieqvd.C φ C
5 angpieqvd.AneB φ A B
6 angpieqvd.BneC φ B C
7 4 3 subcld φ C B
8 2 3 subcld φ A B
9 2 3 5 subne0d φ A B 0
10 7 8 9 divcld φ C B A B
11 6 necomd φ C B
12 4 3 11 subne0d φ C B 0
13 7 8 12 9 divne0d φ C B A B 0
14 lognegb C B A B C B A B 0 C B A B + log C B A B = π
15 10 13 14 syl2anc φ C B A B + log C B A B = π
16 1 8 9 7 12 angvald φ A B F C B = log C B A B
17 16 eqeq1d φ A B F C B = π log C B A B = π
18 15 17 bitr4d φ C B A B + A B F C B = π