Metamath Proof Explorer


Theorem angrteqvd

Description: Two vectors are at a right angle iff their quotient is purely imaginary. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses ang.1 F=x0,y0logyx
angrteqvd.1 φX
angrteqvd.2 φX0
angrteqvd.3 φY
angrteqvd.4 φY0
Assertion angrteqvd φXFYπ2π2YX=0

Proof

Step Hyp Ref Expression
1 ang.1 F=x0,y0logyx
2 angrteqvd.1 φX
3 angrteqvd.2 φX0
4 angrteqvd.3 φY
5 angrteqvd.4 φY0
6 1 2 3 4 5 angvald φXFY=logYX
7 6 eleq1d φXFYπ2π2logYXπ2π2
8 4 2 3 divcld φYX
9 4 2 5 3 divne0d φYX0
10 8 9 logimclad φlogYXππ
11 coseq0negpitopi logYXππcoslogYX=0logYXπ2π2
12 10 11 syl φcoslogYX=0logYXπ2π2
13 8 9 cosarg0d φcoslogYX=0YX=0
14 7 12 13 3bitr2d φXFYπ2π2YX=0