Metamath Proof Explorer


Theorem anifp

Description: The conditional operator is implied by the conjunction of its possible outputs. Dual statement of ifpor . (Contributed by BJ, 30-Sep-2019)

Ref Expression
Assertion anifp ψ χ if- φ ψ χ

Proof

Step Hyp Ref Expression
1 olc ψ ¬ φ ψ
2 olc χ φ χ
3 1 2 anim12i ψ χ ¬ φ ψ φ χ
4 dfifp4 if- φ ψ χ ¬ φ ψ φ χ
5 3 4 sylibr ψ χ if- φ ψ χ