Metamath Proof Explorer


Theorem anim12d

Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994) (Proof shortened by Wolf Lammen, 18-Dec-2013)

Ref Expression
Hypotheses anim12d.1 φ ψ χ
anim12d.2 φ θ τ
Assertion anim12d φ ψ θ χ τ

Proof

Step Hyp Ref Expression
1 anim12d.1 φ ψ χ
2 anim12d.2 φ θ τ
3 idd φ χ τ χ τ
4 1 2 3 syl2and φ ψ θ χ τ