Metamath Proof Explorer


Theorem anim12ii

Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 11-Nov-2007) (Proof shortened by Wolf Lammen, 19-Jul-2013)

Ref Expression
Hypotheses anim12ii.1 φ ψ χ
anim12ii.2 θ ψ τ
Assertion anim12ii φ θ ψ χ τ

Proof

Step Hyp Ref Expression
1 anim12ii.1 φ ψ χ
2 anim12ii.2 θ ψ τ
3 pm3.43 ψ χ ψ τ ψ χ τ
4 1 2 3 syl2an φ θ ψ χ τ