Metamath Proof Explorer


Theorem animpimp2impd

Description: Deduction deriving nested implications from conjunctions. (Contributed by AV, 21-Aug-2022)

Ref Expression
Hypotheses animpimp2impd.1 ψ φ χ θ η
animpimp2impd.2 ψ φ θ η τ
Assertion animpimp2impd φ ψ χ ψ θ τ

Proof

Step Hyp Ref Expression
1 animpimp2impd.1 ψ φ χ θ η
2 animpimp2impd.2 ψ φ θ η τ
3 2 expr ψ φ θ η τ
4 3 a2d ψ φ θ η θ τ
5 1 4 syld ψ φ χ θ τ
6 5 expcom φ ψ χ θ τ
7 6 a2d φ ψ χ ψ θ τ