Metamath Proof Explorer


Theorem anor

Description: Conjunction in terms of disjunction (De Morgan's law). Theorem *4.5 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 3-Nov-2012)

Ref Expression
Assertion anor φ ψ ¬ ¬ φ ¬ ψ

Proof

Step Hyp Ref Expression
1 notnotb φ ψ ¬ ¬ φ ψ
2 ianor ¬ φ ψ ¬ φ ¬ ψ
3 1 2 xchbinx φ ψ ¬ ¬ φ ¬ ψ