Metamath Proof Explorer


Theorem aomclem2

Description: Lemma for dfac11 . Successor case 2, a choice function for subsets of ( R1dom z ) . (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Hypotheses aomclem2.b B = a b | c R1 dom z c b ¬ c a d R1 dom z d z dom z c d a d b
aomclem2.c C = a V sup y a R1 dom z B
aomclem2.on φ dom z On
aomclem2.su φ dom z = suc dom z
aomclem2.we φ a dom z z a We R1 a
aomclem2.a φ A On
aomclem2.za φ dom z A
aomclem2.y φ a 𝒫 R1 A a y a 𝒫 a Fin
Assertion aomclem2 φ a 𝒫 R1 dom z a C a a

Proof

Step Hyp Ref Expression
1 aomclem2.b B = a b | c R1 dom z c b ¬ c a d R1 dom z d z dom z c d a d b
2 aomclem2.c C = a V sup y a R1 dom z B
3 aomclem2.on φ dom z On
4 aomclem2.su φ dom z = suc dom z
5 aomclem2.we φ a dom z z a We R1 a
6 aomclem2.a φ A On
7 aomclem2.za φ dom z A
8 aomclem2.y φ a 𝒫 R1 A a y a 𝒫 a Fin
9 vex a V
10 3 6 jca φ dom z On A On
11 r1ord3 dom z On A On dom z A R1 dom z R1 A
12 10 7 11 sylc φ R1 dom z R1 A
13 12 sspwd φ 𝒫 R1 dom z 𝒫 R1 A
14 13 sseld φ a 𝒫 R1 dom z a 𝒫 R1 A
15 rsp a 𝒫 R1 A a y a 𝒫 a Fin a 𝒫 R1 A a y a 𝒫 a Fin
16 8 14 15 sylsyld φ a 𝒫 R1 dom z a y a 𝒫 a Fin
17 16 3imp φ a 𝒫 R1 dom z a y a 𝒫 a Fin
18 17 eldifad φ a 𝒫 R1 dom z a y a 𝒫 a Fin
19 inss1 𝒫 a Fin 𝒫 a
20 19 sseli y a 𝒫 a Fin y a 𝒫 a
21 20 elpwid y a 𝒫 a Fin y a a
22 18 21 syl φ a 𝒫 R1 dom z a y a a
23 1 3 4 5 aomclem1 φ B Or R1 dom z
24 23 3ad2ant1 φ a 𝒫 R1 dom z a B Or R1 dom z
25 inss2 𝒫 a Fin Fin
26 25 18 sselid φ a 𝒫 R1 dom z a y a Fin
27 eldifsni y a 𝒫 a Fin y a
28 17 27 syl φ a 𝒫 R1 dom z a y a
29 elpwi a 𝒫 R1 dom z a R1 dom z
30 29 3ad2ant2 φ a 𝒫 R1 dom z a a R1 dom z
31 22 30 sstrd φ a 𝒫 R1 dom z a y a R1 dom z
32 fisupcl B Or R1 dom z y a Fin y a y a R1 dom z sup y a R1 dom z B y a
33 24 26 28 31 32 syl13anc φ a 𝒫 R1 dom z a sup y a R1 dom z B y a
34 22 33 sseldd φ a 𝒫 R1 dom z a sup y a R1 dom z B a
35 2 fvmpt2 a V sup y a R1 dom z B a C a = sup y a R1 dom z B
36 9 34 35 sylancr φ a 𝒫 R1 dom z a C a = sup y a R1 dom z B
37 36 34 eqeltrd φ a 𝒫 R1 dom z a C a a
38 37 3exp φ a 𝒫 R1 dom z a C a a
39 38 ralrimiv φ a 𝒫 R1 dom z a C a a