Metamath Proof Explorer


Theorem aomclem5

Description: Lemma for dfac11 . Combine the successor case with the limit case. (Contributed by Stefan O'Rear, 20-Jan-2015)

Ref Expression
Hypotheses aomclem5.b B = a b | c R1 dom z c b ¬ c a d R1 dom z d z dom z c d a d b
aomclem5.c C = a V sup y a R1 dom z B
aomclem5.d D = recs a V C R1 dom z ran a
aomclem5.e E = a b | D -1 a D -1 b
aomclem5.f F = a b | rank a E rank b rank a = rank b a z suc rank a b
aomclem5.g G = if dom z = dom z F E R1 dom z × R1 dom z
aomclem5.on φ dom z On
aomclem5.we φ a dom z z a We R1 a
aomclem5.a φ A On
aomclem5.za φ dom z A
aomclem5.y φ a 𝒫 R1 A a y a 𝒫 a Fin
Assertion aomclem5 φ G We R1 dom z

Proof

Step Hyp Ref Expression
1 aomclem5.b B = a b | c R1 dom z c b ¬ c a d R1 dom z d z dom z c d a d b
2 aomclem5.c C = a V sup y a R1 dom z B
3 aomclem5.d D = recs a V C R1 dom z ran a
4 aomclem5.e E = a b | D -1 a D -1 b
5 aomclem5.f F = a b | rank a E rank b rank a = rank b a z suc rank a b
6 aomclem5.g G = if dom z = dom z F E R1 dom z × R1 dom z
7 aomclem5.on φ dom z On
8 aomclem5.we φ a dom z z a We R1 a
9 aomclem5.a φ A On
10 aomclem5.za φ dom z A
11 aomclem5.y φ a 𝒫 R1 A a y a 𝒫 a Fin
12 7 adantr φ dom z = dom z dom z On
13 simpr φ dom z = dom z dom z = dom z
14 8 adantr φ dom z = dom z a dom z z a We R1 a
15 5 12 13 14 aomclem4 φ dom z = dom z F We R1 dom z
16 iftrue dom z = dom z if dom z = dom z F E = F
17 16 adantl φ dom z = dom z if dom z = dom z F E = F
18 eqidd φ dom z = dom z R1 dom z = R1 dom z
19 17 18 weeq12d φ dom z = dom z if dom z = dom z F E We R1 dom z F We R1 dom z
20 15 19 mpbird φ dom z = dom z if dom z = dom z F E We R1 dom z
21 7 adantr φ ¬ dom z = dom z dom z On
22 eloni dom z On Ord dom z
23 orduniorsuc Ord dom z dom z = dom z dom z = suc dom z
24 7 22 23 3syl φ dom z = dom z dom z = suc dom z
25 24 orcanai φ ¬ dom z = dom z dom z = suc dom z
26 8 adantr φ ¬ dom z = dom z a dom z z a We R1 a
27 9 adantr φ ¬ dom z = dom z A On
28 10 adantr φ ¬ dom z = dom z dom z A
29 11 adantr φ ¬ dom z = dom z a 𝒫 R1 A a y a 𝒫 a Fin
30 1 2 3 4 21 25 26 27 28 29 aomclem3 φ ¬ dom z = dom z E We R1 dom z
31 iffalse ¬ dom z = dom z if dom z = dom z F E = E
32 31 adantl φ ¬ dom z = dom z if dom z = dom z F E = E
33 eqidd φ ¬ dom z = dom z R1 dom z = R1 dom z
34 32 33 weeq12d φ ¬ dom z = dom z if dom z = dom z F E We R1 dom z E We R1 dom z
35 30 34 mpbird φ ¬ dom z = dom z if dom z = dom z F E We R1 dom z
36 20 35 pm2.61dan φ if dom z = dom z F E We R1 dom z
37 weinxp if dom z = dom z F E We R1 dom z if dom z = dom z F E R1 dom z × R1 dom z We R1 dom z
38 36 37 sylib φ if dom z = dom z F E R1 dom z × R1 dom z We R1 dom z
39 weeq1 G = if dom z = dom z F E R1 dom z × R1 dom z G We R1 dom z if dom z = dom z F E R1 dom z × R1 dom z We R1 dom z
40 6 39 ax-mp G We R1 dom z if dom z = dom z F E R1 dom z × R1 dom z We R1 dom z
41 38 40 sylibr φ G We R1 dom z