Metamath Proof Explorer


Theorem argrege0

Description: Closure of the argument of a complex number with nonnegative real part. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion argrege0 A A 0 0 A log A π 2 π 2

Proof

Step Hyp Ref Expression
1 logcl A A 0 log A
2 1 3adant3 A A 0 0 A log A
3 2 imcld A A 0 0 A log A
4 simp3 A A 0 0 A 0 A
5 simp1 A A 0 0 A A
6 5 abscld A A 0 0 A A
7 6 recnd A A 0 0 A A
8 7 mul01d A A 0 0 A A 0 = 0
9 absrpcl A A 0 A +
10 9 3adant3 A A 0 0 A A +
11 10 rpne0d A A 0 0 A A 0
12 5 7 11 divcld A A 0 0 A A A
13 6 12 remul2d A A 0 0 A A A A = A A A
14 5 7 11 divcan2d A A 0 0 A A A A = A
15 14 fveq2d A A 0 0 A A A A = A
16 13 15 eqtr3d A A 0 0 A A A A = A
17 4 8 16 3brtr4d A A 0 0 A A 0 A A A
18 0re 0
19 18 a1i A A 0 0 A 0
20 12 recld A A 0 0 A A A
21 19 20 10 lemul2d A A 0 0 A 0 A A A 0 A A A
22 17 21 mpbird A A 0 0 A 0 A A
23 efiarg A A 0 e i log A = A A
24 23 3adant3 A A 0 0 A e i log A = A A
25 24 fveq2d A A 0 0 A e i log A = A A
26 22 25 breqtrrd A A 0 0 A 0 e i log A
27 recosval log A cos log A = e i log A
28 3 27 syl A A 0 0 A cos log A = e i log A
29 26 28 breqtrrd A A 0 0 A 0 cos log A
30 halfpire π 2
31 pirp π +
32 rphalfcl π + π 2 +
33 rpge0 π 2 + 0 π 2
34 31 32 33 mp2b 0 π 2
35 pire π
36 rphalflt π + π 2 < π
37 31 36 ax-mp π 2 < π
38 30 35 37 ltleii π 2 π
39 18 35 elicc2i π 2 0 π π 2 0 π 2 π 2 π
40 30 34 38 39 mpbir3an π 2 0 π
41 3 recnd A A 0 0 A log A
42 41 abscld A A 0 0 A log A
43 41 absge0d A A 0 0 A 0 log A
44 logimcl A A 0 π < log A log A π
45 44 3adant3 A A 0 0 A π < log A log A π
46 45 simpld A A 0 0 A π < log A
47 35 renegcli π
48 ltle π log A π < log A π log A
49 47 3 48 sylancr A A 0 0 A π < log A π log A
50 46 49 mpd A A 0 0 A π log A
51 45 simprd A A 0 0 A log A π
52 absle log A π log A π π log A log A π
53 3 35 52 sylancl A A 0 0 A log A π π log A log A π
54 50 51 53 mpbir2and A A 0 0 A log A π
55 18 35 elicc2i log A 0 π log A 0 log A log A π
56 42 43 54 55 syl3anbrc A A 0 0 A log A 0 π
57 cosord π 2 0 π log A 0 π π 2 < log A cos log A < cos π 2
58 40 56 57 sylancr A A 0 0 A π 2 < log A cos log A < cos π 2
59 fveq2 log A = log A cos log A = cos log A
60 59 a1i A A 0 0 A log A = log A cos log A = cos log A
61 cosneg log A cos log A = cos log A
62 41 61 syl A A 0 0 A cos log A = cos log A
63 fveqeq2 log A = log A cos log A = cos log A cos log A = cos log A
64 62 63 syl5ibrcom A A 0 0 A log A = log A cos log A = cos log A
65 3 absord A A 0 0 A log A = log A log A = log A
66 60 64 65 mpjaod A A 0 0 A cos log A = cos log A
67 coshalfpi cos π 2 = 0
68 67 a1i A A 0 0 A cos π 2 = 0
69 66 68 breq12d A A 0 0 A cos log A < cos π 2 cos log A < 0
70 58 69 bitrd A A 0 0 A π 2 < log A cos log A < 0
71 70 notbid A A 0 0 A ¬ π 2 < log A ¬ cos log A < 0
72 lenlt log A π 2 log A π 2 ¬ π 2 < log A
73 42 30 72 sylancl A A 0 0 A log A π 2 ¬ π 2 < log A
74 3 recoscld A A 0 0 A cos log A
75 lenlt 0 cos log A 0 cos log A ¬ cos log A < 0
76 18 74 75 sylancr A A 0 0 A 0 cos log A ¬ cos log A < 0
77 71 73 76 3bitr4d A A 0 0 A log A π 2 0 cos log A
78 29 77 mpbird A A 0 0 A log A π 2
79 absle log A π 2 log A π 2 π 2 log A log A π 2
80 3 30 79 sylancl A A 0 0 A log A π 2 π 2 log A log A π 2
81 78 80 mpbid A A 0 0 A π 2 log A log A π 2
82 81 simpld A A 0 0 A π 2 log A
83 81 simprd A A 0 0 A log A π 2
84 30 renegcli π 2
85 84 30 elicc2i log A π 2 π 2 log A π 2 log A log A π 2
86 3 82 83 85 syl3anbrc A A 0 0 A log A π 2 π 2