Step |
Hyp |
Ref |
Expression |
1 |
|
logcl |
|
2 |
1
|
3adant3 |
|
3 |
2
|
imcld |
|
4 |
|
simp3 |
|
5 |
|
simp1 |
|
6 |
5
|
abscld |
|
7 |
6
|
recnd |
|
8 |
7
|
mul01d |
|
9 |
|
absrpcl |
|
10 |
9
|
3adant3 |
|
11 |
10
|
rpne0d |
|
12 |
5 7 11
|
divcld |
|
13 |
6 12
|
remul2d |
|
14 |
5 7 11
|
divcan2d |
|
15 |
14
|
fveq2d |
|
16 |
13 15
|
eqtr3d |
|
17 |
4 8 16
|
3brtr4d |
|
18 |
|
0re |
|
19 |
18
|
a1i |
|
20 |
12
|
recld |
|
21 |
19 20 10
|
lemul2d |
|
22 |
17 21
|
mpbird |
|
23 |
|
efiarg |
|
24 |
23
|
3adant3 |
|
25 |
24
|
fveq2d |
|
26 |
22 25
|
breqtrrd |
|
27 |
|
recosval |
|
28 |
3 27
|
syl |
|
29 |
26 28
|
breqtrrd |
|
30 |
|
halfpire |
|
31 |
|
pirp |
|
32 |
|
rphalfcl |
|
33 |
|
rpge0 |
|
34 |
31 32 33
|
mp2b |
|
35 |
|
pire |
|
36 |
|
rphalflt |
|
37 |
31 36
|
ax-mp |
|
38 |
30 35 37
|
ltleii |
|
39 |
18 35
|
elicc2i |
|
40 |
30 34 38 39
|
mpbir3an |
|
41 |
3
|
recnd |
|
42 |
41
|
abscld |
|
43 |
41
|
absge0d |
|
44 |
|
logimcl |
|
45 |
44
|
3adant3 |
|
46 |
45
|
simpld |
|
47 |
35
|
renegcli |
|
48 |
|
ltle |
|
49 |
47 3 48
|
sylancr |
|
50 |
46 49
|
mpd |
|
51 |
45
|
simprd |
|
52 |
|
absle |
|
53 |
3 35 52
|
sylancl |
|
54 |
50 51 53
|
mpbir2and |
|
55 |
18 35
|
elicc2i |
|
56 |
42 43 54 55
|
syl3anbrc |
|
57 |
|
cosord |
|
58 |
40 56 57
|
sylancr |
|
59 |
|
fveq2 |
|
60 |
59
|
a1i |
|
61 |
|
cosneg |
|
62 |
41 61
|
syl |
|
63 |
|
fveqeq2 |
|
64 |
62 63
|
syl5ibrcom |
|
65 |
3
|
absord |
|
66 |
60 64 65
|
mpjaod |
|
67 |
|
coshalfpi |
|
68 |
67
|
a1i |
|
69 |
66 68
|
breq12d |
|
70 |
58 69
|
bitrd |
|
71 |
70
|
notbid |
|
72 |
|
lenlt |
|
73 |
42 30 72
|
sylancl |
|
74 |
3
|
recoscld |
|
75 |
|
lenlt |
|
76 |
18 74 75
|
sylancr |
|
77 |
71 73 76
|
3bitr4d |
|
78 |
29 77
|
mpbird |
|
79 |
|
absle |
|
80 |
3 30 79
|
sylancl |
|
81 |
78 80
|
mpbid |
|
82 |
81
|
simpld |
|
83 |
81
|
simprd |
|
84 |
30
|
renegcli |
|
85 |
84 30
|
elicc2i |
|
86 |
3 82 83 85
|
syl3anbrc |
|