Step |
Hyp |
Ref |
Expression |
1 |
|
recl |
|
2 |
|
gt0ne0 |
|
3 |
1 2
|
sylan |
|
4 |
|
fveq2 |
|
5 |
|
re0 |
|
6 |
4 5
|
eqtrdi |
|
7 |
6
|
necon3i |
|
8 |
3 7
|
syl |
|
9 |
|
logcl |
|
10 |
8 9
|
syldan |
|
11 |
10
|
imcld |
|
12 |
|
coshalfpi |
|
13 |
|
simpr |
|
14 |
|
abscl |
|
15 |
14
|
adantr |
|
16 |
15
|
recnd |
|
17 |
16
|
mul01d |
|
18 |
|
simpl |
|
19 |
|
absrpcl |
|
20 |
8 19
|
syldan |
|
21 |
20
|
rpne0d |
|
22 |
18 16 21
|
divcld |
|
23 |
15 22
|
remul2d |
|
24 |
18 16 21
|
divcan2d |
|
25 |
24
|
fveq2d |
|
26 |
23 25
|
eqtr3d |
|
27 |
13 17 26
|
3brtr4d |
|
28 |
|
0re |
|
29 |
28
|
a1i |
|
30 |
22
|
recld |
|
31 |
29 30 20
|
ltmul2d |
|
32 |
27 31
|
mpbird |
|
33 |
|
efiarg |
|
34 |
8 33
|
syldan |
|
35 |
34
|
fveq2d |
|
36 |
32 35
|
breqtrrd |
|
37 |
|
recosval |
|
38 |
11 37
|
syl |
|
39 |
36 38
|
breqtrrd |
|
40 |
|
fveq2 |
|
41 |
40
|
a1i |
|
42 |
11
|
recnd |
|
43 |
|
cosneg |
|
44 |
42 43
|
syl |
|
45 |
|
fveqeq2 |
|
46 |
44 45
|
syl5ibrcom |
|
47 |
11
|
absord |
|
48 |
41 46 47
|
mpjaod |
|
49 |
39 48
|
breqtrrd |
|
50 |
12 49
|
eqbrtrid |
|
51 |
42
|
abscld |
|
52 |
42
|
absge0d |
|
53 |
|
logimcl |
|
54 |
8 53
|
syldan |
|
55 |
54
|
simpld |
|
56 |
|
pire |
|
57 |
56
|
renegcli |
|
58 |
|
ltle |
|
59 |
57 11 58
|
sylancr |
|
60 |
55 59
|
mpd |
|
61 |
54
|
simprd |
|
62 |
|
absle |
|
63 |
11 56 62
|
sylancl |
|
64 |
60 61 63
|
mpbir2and |
|
65 |
28 56
|
elicc2i |
|
66 |
51 52 64 65
|
syl3anbrc |
|
67 |
|
halfpire |
|
68 |
|
pirp |
|
69 |
|
rphalfcl |
|
70 |
|
rpge0 |
|
71 |
68 69 70
|
mp2b |
|
72 |
|
rphalflt |
|
73 |
68 72
|
ax-mp |
|
74 |
67 56 73
|
ltleii |
|
75 |
28 56
|
elicc2i |
|
76 |
67 71 74 75
|
mpbir3an |
|
77 |
|
cosord |
|
78 |
66 76 77
|
sylancl |
|
79 |
50 78
|
mpbird |
|
80 |
|
abslt |
|
81 |
11 67 80
|
sylancl |
|
82 |
79 81
|
mpbid |
|
83 |
82
|
simpld |
|
84 |
82
|
simprd |
|
85 |
67
|
renegcli |
|
86 |
85
|
rexri |
|
87 |
67
|
rexri |
|
88 |
|
elioo2 |
|
89 |
86 87 88
|
mp2an |
|
90 |
11 83 84 89
|
syl3anbrc |
|