Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|
2 |
|
1zzd |
|
3 |
|
nnz |
|
4 |
|
elfzelz |
|
5 |
4
|
zcnd |
|
6 |
5
|
adantl |
|
7 |
|
id |
|
8 |
2 2 3 6 7
|
fsumshftm |
|
9 |
|
1m1e0 |
|
10 |
9
|
oveq1i |
|
11 |
10
|
sumeq1i |
|
12 |
8 11
|
eqtrdi |
|
13 |
|
elfznn0 |
|
14 |
13
|
adantl |
|
15 |
|
bcnp1n |
|
16 |
14 15
|
syl |
|
17 |
14
|
nn0cnd |
|
18 |
|
ax-1cn |
|
19 |
|
addcom |
|
20 |
17 18 19
|
sylancl |
|
21 |
20
|
oveq1d |
|
22 |
16 21
|
eqtr3d |
|
23 |
22
|
sumeq2dv |
|
24 |
|
1nn0 |
|
25 |
|
nnm1nn0 |
|
26 |
|
bcxmas |
|
27 |
24 25 26
|
sylancr |
|
28 |
23 27
|
eqtr4d |
|
29 |
|
1cnd |
|
30 |
|
nncn |
|
31 |
29 29 30
|
ppncand |
|
32 |
29 30 31
|
comraddd |
|
33 |
32
|
oveq1d |
|
34 |
|
nnnn0 |
|
35 |
|
bcp1m1 |
|
36 |
34 35
|
syl |
|
37 |
|
sqval |
|
38 |
37
|
eqcomd |
|
39 |
|
mulid2 |
|
40 |
38 39
|
oveq12d |
|
41 |
30 40
|
syl |
|
42 |
30 30 29 41
|
joinlmuladdmuld |
|
43 |
42
|
oveq1d |
|
44 |
33 36 43
|
3eqtrd |
|
45 |
12 28 44
|
3eqtrd |
|
46 |
|
oveq2 |
|
47 |
|
fz10 |
|
48 |
46 47
|
eqtrdi |
|
49 |
48
|
sumeq1d |
|
50 |
|
sum0 |
|
51 |
49 50
|
eqtrdi |
|
52 |
|
sq0i |
|
53 |
|
id |
|
54 |
52 53
|
oveq12d |
|
55 |
|
00id |
|
56 |
54 55
|
eqtrdi |
|
57 |
56
|
oveq1d |
|
58 |
|
2cn |
|
59 |
|
2ne0 |
|
60 |
58 59
|
div0i |
|
61 |
57 60
|
eqtrdi |
|
62 |
51 61
|
eqtr4d |
|
63 |
45 62
|
jaoi |
|
64 |
1 63
|
sylbi |
|