Database
BASIC CATEGORY THEORY
Arrows (disjointified hom-sets)
arwcd
Next ⟩
dmaf
Metamath Proof Explorer
Ascii
Unicode
Theorem
arwcd
Description:
The codomain of an arrow is an object.
(Contributed by
Mario Carneiro
, 11-Jan-2017)
Ref
Expression
Hypotheses
arwrcl.a
⊢
A
=
Arrow
⁡
C
arwdm.b
⊢
B
=
Base
C
Assertion
arwcd
⊢
F
∈
A
→
cod
a
⁡
F
∈
B
Proof
Step
Hyp
Ref
Expression
1
arwrcl.a
⊢
A
=
Arrow
⁡
C
2
arwdm.b
⊢
B
=
Base
C
3
eqid
⊢
Hom
a
⁡
C
=
Hom
a
⁡
C
4
1
3
arwhoma
⊢
F
∈
A
→
F
∈
dom
a
⁡
F
Hom
a
⁡
C
cod
a
⁡
F
5
3
2
homarcl2
⊢
F
∈
dom
a
⁡
F
Hom
a
⁡
C
cod
a
⁡
F
→
dom
a
⁡
F
∈
B
∧
cod
a
⁡
F
∈
B
6
4
5
syl
⊢
F
∈
A
→
dom
a
⁡
F
∈
B
∧
cod
a
⁡
F
∈
B
7
6
simprd
⊢
F
∈
A
→
cod
a
⁡
F
∈
B