Metamath Proof Explorer


Theorem arwcd

Description: The codomain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a A = Arrow C
arwdm.b B = Base C
Assertion arwcd F A cod a F B

Proof

Step Hyp Ref Expression
1 arwrcl.a A = Arrow C
2 arwdm.b B = Base C
3 eqid Hom a C = Hom a C
4 1 3 arwhoma F A F dom a F Hom a C cod a F
5 3 2 homarcl2 F dom a F Hom a C cod a F dom a F B cod a F B
6 4 5 syl F A dom a F B cod a F B
7 6 simprd F A cod a F B