Metamath Proof Explorer


Theorem arwdmcd

Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis arwrcl.a A = Arrow C
Assertion arwdmcd F A F = dom a F cod a F 2 nd F

Proof

Step Hyp Ref Expression
1 arwrcl.a A = Arrow C
2 eqid Hom a C = Hom a C
3 1 2 arwhoma F A F dom a F Hom a C cod a F
4 2 homadmcd F dom a F Hom a C cod a F F = dom a F cod a F 2 nd F
5 3 4 syl F A F = dom a F cod a F 2 nd F