Metamath Proof Explorer


Theorem arwhom

Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a A=ArrowC
arwhom.j J=HomC
Assertion arwhom FA2ndFdomaFJcodaF

Proof

Step Hyp Ref Expression
1 arwrcl.a A=ArrowC
2 arwhom.j J=HomC
3 eqid HomaC=HomaC
4 1 3 arwhoma FAFdomaFHomaCcodaF
5 3 2 homahom FdomaFHomaCcodaF2ndFdomaFJcodaF
6 4 5 syl FA2ndFdomaFJcodaF