Metamath Proof Explorer


Theorem arwhoma

Description: An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a A = Arrow C
arwhoma.h H = Hom a C
Assertion arwhoma F A F dom a F H cod a F

Proof

Step Hyp Ref Expression
1 arwrcl.a A = Arrow C
2 arwhoma.h H = Hom a C
3 1 2 arwval A = ran H
4 3 eleq2i F A F ran H
5 4 biimpi F A F ran H
6 eqid Base C = Base C
7 1 arwrcl F A C Cat
8 2 6 7 homaf F A H : Base C × Base C 𝒫 Base C × Base C × V
9 ffn H : Base C × Base C 𝒫 Base C × Base C × V H Fn Base C × Base C
10 fnunirn H Fn Base C × Base C F ran H z Base C × Base C F H z
11 8 9 10 3syl F A F ran H z Base C × Base C F H z
12 5 11 mpbid F A z Base C × Base C F H z
13 fveq2 z = x y H z = H x y
14 df-ov x H y = H x y
15 13 14 eqtr4di z = x y H z = x H y
16 15 eleq2d z = x y F H z F x H y
17 16 rexxp z Base C × Base C F H z x Base C y Base C F x H y
18 12 17 sylib F A x Base C y Base C F x H y
19 id F x H y F x H y
20 2 homadm F x H y dom a F = x
21 2 homacd F x H y cod a F = y
22 20 21 oveq12d F x H y dom a F H cod a F = x H y
23 19 22 eleqtrrd F x H y F dom a F H cod a F
24 23 rexlimivw y Base C F x H y F dom a F H cod a F
25 24 rexlimivw x Base C y Base C F x H y F dom a F H cod a F
26 18 25 syl F A F dom a F H cod a F