Metamath Proof Explorer


Theorem arwrcl

Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis arwrcl.a A = Arrow C
Assertion arwrcl F A C Cat

Proof

Step Hyp Ref Expression
1 arwrcl.a A = Arrow C
2 df-arw Arrow = c Cat ran Hom a c
3 2 dmmptss dom Arrow Cat
4 elfvdm F Arrow C C dom Arrow
5 4 1 eleq2s F A C dom Arrow
6 3 5 sselid F A C Cat