Metamath Proof Explorer


Theorem ascl1

Description: The scalar 1 embedded into a left module corresponds to the 1 of the left module if the left module is also a ring. (Contributed by AV, 31-Jul-2019)

Ref Expression
Hypotheses ascl0.a A = algSc W
ascl0.f F = Scalar W
ascl0.l φ W LMod
ascl0.r φ W Ring
Assertion ascl1 φ A 1 F = 1 W

Proof

Step Hyp Ref Expression
1 ascl0.a A = algSc W
2 ascl0.f F = Scalar W
3 ascl0.l φ W LMod
4 ascl0.r φ W Ring
5 2 lmodring W LMod F Ring
6 3 5 syl φ F Ring
7 eqid Base F = Base F
8 eqid 1 F = 1 F
9 7 8 ringidcl F Ring 1 F Base F
10 6 9 syl φ 1 F Base F
11 eqid W = W
12 eqid 1 W = 1 W
13 1 2 7 11 12 asclval 1 F Base F A 1 F = 1 F W 1 W
14 10 13 syl φ A 1 F = 1 F W 1 W
15 eqid Base W = Base W
16 15 12 ringidcl W Ring 1 W Base W
17 4 16 syl φ 1 W Base W
18 15 2 11 8 lmodvs1 W LMod 1 W Base W 1 F W 1 W = 1 W
19 3 17 18 syl2anc φ 1 F W 1 W = 1 W
20 14 19 eqtrd φ A 1 F = 1 W