Metamath Proof Explorer


Theorem asclf

Description: The algebra scalars function is a function into the base set. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses asclf.a A = algSc W
asclf.f F = Scalar W
asclf.r φ W Ring
asclf.l φ W LMod
asclf.k K = Base F
asclf.b B = Base W
Assertion asclf φ A : K B

Proof

Step Hyp Ref Expression
1 asclf.a A = algSc W
2 asclf.f F = Scalar W
3 asclf.r φ W Ring
4 asclf.l φ W LMod
5 asclf.k K = Base F
6 asclf.b B = Base W
7 4 adantr φ x K W LMod
8 simpr φ x K x K
9 eqid 1 W = 1 W
10 6 9 ringidcl W Ring 1 W B
11 3 10 syl φ 1 W B
12 11 adantr φ x K 1 W B
13 eqid W = W
14 6 2 13 5 lmodvscl W LMod x K 1 W B x W 1 W B
15 7 8 12 14 syl3anc φ x K x W 1 W B
16 1 2 5 13 9 asclfval A = x K x W 1 W
17 15 16 fmptd φ A : K B