Metamath Proof Explorer


Theorem asclfn

Description: Unconditional functionality of the algebra scalars function. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses asclfn.a A = algSc W
asclfn.f F = Scalar W
asclfn.k K = Base F
Assertion asclfn A Fn K

Proof

Step Hyp Ref Expression
1 asclfn.a A = algSc W
2 asclfn.f F = Scalar W
3 asclfn.k K = Base F
4 ovex x W 1 W V
5 eqid W = W
6 eqid 1 W = 1 W
7 1 2 3 5 6 asclfval A = x K x W 1 W
8 4 7 fnmpti A Fn K