Metamath Proof Explorer
Description: Unconditional functionality of the algebra scalars function.
(Contributed by Mario Carneiro, 9-Mar-2015)
|
|
Ref |
Expression |
|
Hypotheses |
asclfn.a |
|
|
|
asclfn.f |
|
|
|
asclfn.k |
|
|
Assertion |
asclfn |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
asclfn.a |
|
2 |
|
asclfn.f |
|
3 |
|
asclfn.k |
|
4 |
|
ovex |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
1 2 3 5 6
|
asclfval |
|
8 |
4 7
|
fnmpti |
|