Metamath Proof Explorer


Theorem asclfval

Description: Function value of the algebraic scalars function. (Contributed by Mario Carneiro, 8-Mar-2015)

Ref Expression
Hypotheses asclfval.a A = algSc W
asclfval.f F = Scalar W
asclfval.k K = Base F
asclfval.s · ˙ = W
asclfval.o 1 ˙ = 1 W
Assertion asclfval A = x K x · ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 asclfval.a A = algSc W
2 asclfval.f F = Scalar W
3 asclfval.k K = Base F
4 asclfval.s · ˙ = W
5 asclfval.o 1 ˙ = 1 W
6 fveq2 w = W Scalar w = Scalar W
7 6 2 eqtr4di w = W Scalar w = F
8 7 fveq2d w = W Base Scalar w = Base F
9 8 3 eqtr4di w = W Base Scalar w = K
10 fveq2 w = W w = W
11 10 4 eqtr4di w = W w = · ˙
12 eqidd w = W x = x
13 fveq2 w = W 1 w = 1 W
14 13 5 eqtr4di w = W 1 w = 1 ˙
15 11 12 14 oveq123d w = W x w 1 w = x · ˙ 1 ˙
16 9 15 mpteq12dv w = W x Base Scalar w x w 1 w = x K x · ˙ 1 ˙
17 df-ascl algSc = w V x Base Scalar w x w 1 w
18 16 17 3 mptfvmpt W V algSc W = x K x · ˙ 1 ˙
19 fvprc ¬ W V algSc W =
20 mpt0 x x · ˙ 1 ˙ =
21 19 20 eqtr4di ¬ W V algSc W = x x · ˙ 1 ˙
22 fvprc ¬ W V Scalar W =
23 2 22 eqtrid ¬ W V F =
24 23 fveq2d ¬ W V Base F = Base
25 base0 = Base
26 24 25 eqtr4di ¬ W V Base F =
27 3 26 eqtrid ¬ W V K =
28 27 mpteq1d ¬ W V x K x · ˙ 1 ˙ = x x · ˙ 1 ˙
29 21 28 eqtr4d ¬ W V algSc W = x K x · ˙ 1 ˙
30 18 29 pm2.61i algSc W = x K x · ˙ 1 ˙
31 1 30 eqtri A = x K x · ˙ 1 ˙