| Step | Hyp | Ref | Expression | 
						
							| 1 |  | asclf.a |  | 
						
							| 2 |  | asclf.f |  | 
						
							| 3 |  | asclf.r |  | 
						
							| 4 |  | asclf.l |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 2 | lmodring |  | 
						
							| 10 | 4 9 | syl |  | 
						
							| 11 |  | ringgrp |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 |  | ringgrp |  | 
						
							| 14 | 3 13 | syl |  | 
						
							| 15 | 1 2 3 4 5 6 | asclf |  | 
						
							| 16 | 4 | adantr |  | 
						
							| 17 |  | simprl |  | 
						
							| 18 |  | simprr |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 6 19 | ringidcl |  | 
						
							| 21 | 3 20 | syl |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 6 8 2 23 5 7 | lmodvsdir |  | 
						
							| 25 | 16 17 18 22 24 | syl13anc |  | 
						
							| 26 | 5 7 | grpcl |  | 
						
							| 27 | 26 | 3expb |  | 
						
							| 28 | 12 27 | sylan |  | 
						
							| 29 | 1 2 5 23 19 | asclval |  | 
						
							| 30 | 28 29 | syl |  | 
						
							| 31 | 1 2 5 23 19 | asclval |  | 
						
							| 32 | 1 2 5 23 19 | asclval |  | 
						
							| 33 | 31 32 | oveqan12d |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 | 25 30 34 | 3eqtr4d |  | 
						
							| 36 | 5 6 7 8 12 14 15 35 | isghmd |  |