Metamath Proof Explorer


Theorem asclinvg

Description: The group inverse (negation) of a lifted scalar is the lifted negation of the scalar. (Contributed by AV, 2-Sep-2019)

Ref Expression
Hypotheses asclinvg.a A = algSc W
asclinvg.r R = Scalar W
asclinvg.k B = Base R
asclinvg.i I = inv g R
asclinvg.j J = inv g W
Assertion asclinvg W LMod W Ring C B J A C = A I C

Proof

Step Hyp Ref Expression
1 asclinvg.a A = algSc W
2 asclinvg.r R = Scalar W
3 asclinvg.k B = Base R
4 asclinvg.i I = inv g R
5 asclinvg.j J = inv g W
6 simp2 W LMod W Ring C B W Ring
7 simp1 W LMod W Ring C B W LMod
8 1 2 6 7 asclghm W LMod W Ring C B A R GrpHom W
9 simp3 W LMod W Ring C B C B
10 3 4 5 ghminv A R GrpHom W C B A I C = J A C
11 10 eqcomd A R GrpHom W C B J A C = A I C
12 8 9 11 syl2anc W LMod W Ring C B J A C = A I C