Metamath Proof Explorer


Theorem asclmul2

Description: Right multiplication by a lifted scalar is the same as the scalar operation. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses asclmul1.a A = algSc W
asclmul1.f F = Scalar W
asclmul1.k K = Base F
asclmul1.v V = Base W
asclmul1.t × ˙ = W
asclmul1.s · ˙ = W
Assertion asclmul2 W AssAlg R K X V X × ˙ A R = R · ˙ X

Proof

Step Hyp Ref Expression
1 asclmul1.a A = algSc W
2 asclmul1.f F = Scalar W
3 asclmul1.k K = Base F
4 asclmul1.v V = Base W
5 asclmul1.t × ˙ = W
6 asclmul1.s · ˙ = W
7 eqid 1 W = 1 W
8 1 2 3 6 7 asclval R K A R = R · ˙ 1 W
9 8 3ad2ant2 W AssAlg R K X V A R = R · ˙ 1 W
10 9 oveq2d W AssAlg R K X V X × ˙ A R = X × ˙ R · ˙ 1 W
11 simp1 W AssAlg R K X V W AssAlg
12 simp2 W AssAlg R K X V R K
13 simp3 W AssAlg R K X V X V
14 assaring W AssAlg W Ring
15 14 3ad2ant1 W AssAlg R K X V W Ring
16 4 7 ringidcl W Ring 1 W V
17 15 16 syl W AssAlg R K X V 1 W V
18 4 2 3 6 5 assaassr W AssAlg R K X V 1 W V X × ˙ R · ˙ 1 W = R · ˙ X × ˙ 1 W
19 11 12 13 17 18 syl13anc W AssAlg R K X V X × ˙ R · ˙ 1 W = R · ˙ X × ˙ 1 W
20 4 5 7 ringridm W Ring X V X × ˙ 1 W = X
21 15 13 20 syl2anc W AssAlg R K X V X × ˙ 1 W = X
22 21 oveq2d W AssAlg R K X V R · ˙ X × ˙ 1 W = R · ˙ X
23 10 19 22 3eqtrd W AssAlg R K X V X × ˙ A R = R · ˙ X