Step |
Hyp |
Ref |
Expression |
1 |
|
asclply1subcl.1 |
|
2 |
|
asclply1subcl.2 |
|
3 |
|
asclply1subcl.3 |
|
4 |
|
asclply1subcl.4 |
|
5 |
|
asclply1subcl.5 |
|
6 |
|
asclply1subcl.6 |
|
7 |
|
asclply1subcl.7 |
|
8 |
|
eqid |
|
9 |
8
|
subrgss |
|
10 |
6 9
|
syl |
|
11 |
10 7
|
sseldd |
|
12 |
|
subrgrcl |
|
13 |
3
|
ply1sca |
|
14 |
6 12 13
|
3syl |
|
15 |
14
|
fveq2d |
|
16 |
11 15
|
eleqtrd |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
1 17 18 19 20
|
asclval |
|
22 |
16 21
|
syl |
|
23 |
3 2 4 5
|
subrgply1 |
|
24 |
|
eqid |
|
25 |
24 19
|
ressvsca |
|
26 |
6 23 25
|
3syl |
|
27 |
26
|
oveqd |
|
28 |
|
id |
|
29 |
20
|
subrg1cl |
|
30 |
6 23 29
|
3syl |
|
31 |
3 2 4 5 6 24
|
ressply1vsca |
|
32 |
28 7 30 31
|
syl12anc |
|
33 |
27 32
|
eqtr4d |
|
34 |
2
|
subrgring |
|
35 |
4
|
ply1lmod |
|
36 |
6 34 35
|
3syl |
|
37 |
2 8
|
ressbas2 |
|
38 |
6 9 37
|
3syl |
|
39 |
7 38
|
eleqtrd |
|
40 |
2
|
ovexi |
|
41 |
4
|
ply1sca |
|
42 |
40 41
|
ax-mp |
|
43 |
|
eqid |
|
44 |
|
eqid |
|
45 |
5 42 43 44
|
lmodvscl |
|
46 |
36 39 30 45
|
syl3anc |
|
47 |
33 46
|
eqeltrd |
|
48 |
22 47
|
eqeltrd |
|