Metamath Proof Explorer


Theorem asclrhm

Description: The scalar injection is a ring homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015)

Ref Expression
Hypotheses asclrhm.a A = algSc W
asclrhm.f F = Scalar W
Assertion asclrhm W AssAlg A F RingHom W

Proof

Step Hyp Ref Expression
1 asclrhm.a A = algSc W
2 asclrhm.f F = Scalar W
3 eqid Base F = Base F
4 eqid 1 F = 1 F
5 eqid 1 W = 1 W
6 eqid F = F
7 eqid W = W
8 2 assasca W AssAlg F Ring
9 assaring W AssAlg W Ring
10 assalmod W AssAlg W LMod
11 1 2 10 9 ascl1 W AssAlg A 1 F = 1 W
12 1 2 3 7 6 ascldimul W AssAlg x Base F y Base F A x F y = A x W A y
13 12 3expb W AssAlg x Base F y Base F A x F y = A x W A y
14 1 2 9 10 asclghm W AssAlg A F GrpHom W
15 3 4 5 6 7 8 9 11 13 14 isrhm2d W AssAlg A F RingHom W