Metamath Proof Explorer


Theorem asclrhm

Description: The scalar injection is a ring homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015)

Ref Expression
Hypotheses asclrhm.a A = algSc W
asclrhm.f F = Scalar W
Assertion asclrhm W AssAlg A F RingHom W

Proof

Step Hyp Ref Expression
1 asclrhm.a A = algSc W
2 asclrhm.f F = Scalar W
3 eqid Base F = Base F
4 eqid 1 F = 1 F
5 eqid 1 W = 1 W
6 eqid F = F
7 eqid W = W
8 2 assasca W AssAlg F CRing
9 8 crngringd W AssAlg F Ring
10 assaring W AssAlg W Ring
11 assalmod W AssAlg W LMod
12 1 2 11 10 ascl1 W AssAlg A 1 F = 1 W
13 1 2 3 7 6 ascldimul W AssAlg x Base F y Base F A x F y = A x W A y
14 13 3expb W AssAlg x Base F y Base F A x F y = A x W A y
15 1 2 10 11 asclghm W AssAlg A F GrpHom W
16 3 4 5 6 7 9 10 12 14 15 isrhm2d W AssAlg A F RingHom W