Metamath Proof Explorer


Theorem asclval

Description: Value of a mapped algebra scalar. (Contributed by Mario Carneiro, 8-Mar-2015)

Ref Expression
Hypotheses asclfval.a A = algSc W
asclfval.f F = Scalar W
asclfval.k K = Base F
asclfval.s · ˙ = W
asclfval.o 1 ˙ = 1 W
Assertion asclval X K A X = X · ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 asclfval.a A = algSc W
2 asclfval.f F = Scalar W
3 asclfval.k K = Base F
4 asclfval.s · ˙ = W
5 asclfval.o 1 ˙ = 1 W
6 oveq1 x = X x · ˙ 1 ˙ = X · ˙ 1 ˙
7 1 2 3 4 5 asclfval A = x K x · ˙ 1 ˙
8 ovex X · ˙ 1 ˙ V
9 6 7 8 fvmpt X K A X = X · ˙ 1 ˙