Metamath Proof Explorer


Theorem asinlem2

Description: The argument to the logarithm in df-asin has the property that replacing A with -u A in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion asinlem2 A i A + 1 A 2 i A + 1 A 2 = 1

Proof

Step Hyp Ref Expression
1 ax-icn i
2 mulcl i A i A
3 1 2 mpan A i A
4 ax-1cn 1
5 sqcl A A 2
6 subcl 1 A 2 1 A 2
7 4 5 6 sylancr A 1 A 2
8 7 sqrtcld A 1 A 2
9 3 8 addcomd A i A + 1 A 2 = 1 A 2 + i A
10 mulneg2 i A i A = i A
11 1 10 mpan A i A = i A
12 sqneg A A 2 = A 2
13 12 oveq2d A 1 A 2 = 1 A 2
14 13 fveq2d A 1 A 2 = 1 A 2
15 11 14 oveq12d A i A + 1 A 2 = - i A + 1 A 2
16 3 negcld A i A
17 16 8 addcomd A - i A + 1 A 2 = 1 A 2 + i A
18 8 3 negsubd A 1 A 2 + i A = 1 A 2 i A
19 15 17 18 3eqtrd A i A + 1 A 2 = 1 A 2 i A
20 9 19 oveq12d A i A + 1 A 2 i A + 1 A 2 = 1 A 2 + i A 1 A 2 i A
21 7 sqsqrtd A 1 A 2 2 = 1 A 2
22 sqmul i A i A 2 = i 2 A 2
23 1 22 mpan A i A 2 = i 2 A 2
24 i2 i 2 = 1
25 24 oveq1i i 2 A 2 = -1 A 2
26 5 mulm1d A -1 A 2 = A 2
27 25 26 syl5eq A i 2 A 2 = A 2
28 23 27 eqtrd A i A 2 = A 2
29 21 28 oveq12d A 1 A 2 2 i A 2 = 1 - A 2 - A 2
30 subsq 1 A 2 i A 1 A 2 2 i A 2 = 1 A 2 + i A 1 A 2 i A
31 8 3 30 syl2anc A 1 A 2 2 i A 2 = 1 A 2 + i A 1 A 2 i A
32 7 5 subnegd A 1 - A 2 - A 2 = 1 - A 2 + A 2
33 29 31 32 3eqtr3d A 1 A 2 + i A 1 A 2 i A = 1 - A 2 + A 2
34 npcan 1 A 2 1 - A 2 + A 2 = 1
35 4 5 34 sylancr A 1 - A 2 + A 2 = 1
36 20 33 35 3eqtrd A i A + 1 A 2 i A + 1 A 2 = 1