Metamath Proof Explorer


Theorem asinlem3a

Description: Lemma for asinlem3 . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion asinlem3a A A 0 0 i A + 1 A 2

Proof

Step Hyp Ref Expression
1 imcl A A
2 1 adantr A A 0 A
3 2 renegcld A A 0 A
4 ax-1cn 1
5 sqcl A A 2
6 5 adantr A A 0 A 2
7 subcl 1 A 2 1 A 2
8 4 6 7 sylancr A A 0 1 A 2
9 8 sqrtcld A A 0 1 A 2
10 9 recld A A 0 1 A 2
11 1 le0neg1d A A 0 0 A
12 11 biimpa A A 0 0 A
13 8 sqrtrege0d A A 0 0 1 A 2
14 3 10 12 13 addge0d A A 0 0 - A + 1 A 2
15 ax-icn i
16 simpl A A 0 A
17 mulcl i A i A
18 15 16 17 sylancr A A 0 i A
19 18 9 readdd A A 0 i A + 1 A 2 = i A + 1 A 2
20 negicn i
21 mulcl i A i A
22 20 16 21 sylancr A A 0 i A
23 22 renegd A A 0 i A = i A
24 15 negnegi i = i
25 24 oveq1i i A = i A
26 mulneg1 i A i A = i A
27 20 16 26 sylancr A A 0 i A = i A
28 25 27 eqtr3id A A 0 i A = i A
29 28 fveq2d A A 0 i A = i A
30 imre A A = i A
31 30 adantr A A 0 A = i A
32 31 negeqd A A 0 A = i A
33 23 29 32 3eqtr4d A A 0 i A = A
34 33 oveq1d A A 0 i A + 1 A 2 = - A + 1 A 2
35 19 34 eqtrd A A 0 i A + 1 A 2 = - A + 1 A 2
36 14 35 breqtrrd A A 0 0 i A + 1 A 2