| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imcl |  | 
						
							| 2 | 1 | adantr |  | 
						
							| 3 | 2 | renegcld |  | 
						
							| 4 |  | ax-1cn |  | 
						
							| 5 |  | sqcl |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 |  | subcl |  | 
						
							| 8 | 4 6 7 | sylancr |  | 
						
							| 9 | 8 | sqrtcld |  | 
						
							| 10 | 9 | recld |  | 
						
							| 11 | 1 | le0neg1d |  | 
						
							| 12 | 11 | biimpa |  | 
						
							| 13 | 8 | sqrtrege0d |  | 
						
							| 14 | 3 10 12 13 | addge0d |  | 
						
							| 15 |  | ax-icn |  | 
						
							| 16 |  | simpl |  | 
						
							| 17 |  | mulcl |  | 
						
							| 18 | 15 16 17 | sylancr |  | 
						
							| 19 | 18 9 | readdd |  | 
						
							| 20 |  | negicn |  | 
						
							| 21 |  | mulcl |  | 
						
							| 22 | 20 16 21 | sylancr |  | 
						
							| 23 | 22 | renegd |  | 
						
							| 24 | 15 | negnegi |  | 
						
							| 25 | 24 | oveq1i |  | 
						
							| 26 |  | mulneg1 |  | 
						
							| 27 | 20 16 26 | sylancr |  | 
						
							| 28 | 25 27 | eqtr3id |  | 
						
							| 29 | 28 | fveq2d |  | 
						
							| 30 |  | imre |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 31 | negeqd |  | 
						
							| 33 | 23 29 32 | 3eqtr4d |  | 
						
							| 34 | 33 | oveq1d |  | 
						
							| 35 | 19 34 | eqtrd |  | 
						
							| 36 | 14 35 | breqtrrd |  |