Step |
Hyp |
Ref |
Expression |
1 |
|
imcl |
|
2 |
1
|
adantr |
|
3 |
2
|
renegcld |
|
4 |
|
ax-1cn |
|
5 |
|
sqcl |
|
6 |
5
|
adantr |
|
7 |
|
subcl |
|
8 |
4 6 7
|
sylancr |
|
9 |
8
|
sqrtcld |
|
10 |
9
|
recld |
|
11 |
1
|
le0neg1d |
|
12 |
11
|
biimpa |
|
13 |
8
|
sqrtrege0d |
|
14 |
3 10 12 13
|
addge0d |
|
15 |
|
ax-icn |
|
16 |
|
simpl |
|
17 |
|
mulcl |
|
18 |
15 16 17
|
sylancr |
|
19 |
18 9
|
readdd |
|
20 |
|
negicn |
|
21 |
|
mulcl |
|
22 |
20 16 21
|
sylancr |
|
23 |
22
|
renegd |
|
24 |
15
|
negnegi |
|
25 |
24
|
oveq1i |
|
26 |
|
mulneg1 |
|
27 |
20 16 26
|
sylancr |
|
28 |
25 27
|
eqtr3id |
|
29 |
28
|
fveq2d |
|
30 |
|
imre |
|
31 |
30
|
adantr |
|
32 |
31
|
negeqd |
|
33 |
23 29 32
|
3eqtr4d |
|
34 |
33
|
oveq1d |
|
35 |
19 34
|
eqtrd |
|
36 |
14 35
|
breqtrrd |
|