Metamath Proof Explorer


Theorem asinneg

Description: The arcsine function is odd. (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion asinneg A arcsin A = arcsin A

Proof

Step Hyp Ref Expression
1 ax-icn i
2 mulcl i A i A
3 1 2 mpan A i A
4 ax-1cn 1
5 sqcl A A 2
6 subcl 1 A 2 1 A 2
7 4 5 6 sylancr A 1 A 2
8 7 sqrtcld A 1 A 2
9 3 8 addcld A i A + 1 A 2
10 asinlem A i A + 1 A 2 0
11 9 10 logcld A log i A + 1 A 2
12 efneg log i A + 1 A 2 e log i A + 1 A 2 = 1 e log i A + 1 A 2
13 11 12 syl A e log i A + 1 A 2 = 1 e log i A + 1 A 2
14 eflog i A + 1 A 2 i A + 1 A 2 0 e log i A + 1 A 2 = i A + 1 A 2
15 9 10 14 syl2anc A e log i A + 1 A 2 = i A + 1 A 2
16 15 oveq2d A 1 e log i A + 1 A 2 = 1 i A + 1 A 2
17 asinlem2 A i A + 1 A 2 i A + 1 A 2 = 1
18 4 a1i A 1
19 negcl A A
20 mulcl i A i A
21 1 19 20 sylancr A i A
22 19 sqcld A A 2
23 subcl 1 A 2 1 A 2
24 4 22 23 sylancr A 1 A 2
25 24 sqrtcld A 1 A 2
26 21 25 addcld A i A + 1 A 2
27 18 9 26 10 divmuld A 1 i A + 1 A 2 = i A + 1 A 2 i A + 1 A 2 i A + 1 A 2 = 1
28 17 27 mpbird A 1 i A + 1 A 2 = i A + 1 A 2
29 13 16 28 3eqtrd A e log i A + 1 A 2 = i A + 1 A 2
30 asinlem A i A + 1 A 2 0
31 19 30 syl A i A + 1 A 2 0
32 11 negcld A log i A + 1 A 2
33 11 imnegd A log i A + 1 A 2 = log i A + 1 A 2
34 11 imcld A log i A + 1 A 2
35 34 renegcld A log i A + 1 A 2
36 pire π
37 36 a1i A π
38 9 10 logimcld A π < log i A + 1 A 2 log i A + 1 A 2 π
39 38 simprd A log i A + 1 A 2 π
40 9 renegd A i A + 1 A 2 = i A + 1 A 2
41 asinlem3 A 0 i A + 1 A 2
42 9 recld A i A + 1 A 2
43 42 le0neg2d A 0 i A + 1 A 2 i A + 1 A 2 0
44 41 43 mpbid A i A + 1 A 2 0
45 40 44 eqbrtrd A i A + 1 A 2 0
46 9 negcld A i A + 1 A 2
47 46 recld A i A + 1 A 2
48 0re 0
49 lenlt i A + 1 A 2 0 i A + 1 A 2 0 ¬ 0 < i A + 1 A 2
50 47 48 49 sylancl A i A + 1 A 2 0 ¬ 0 < i A + 1 A 2
51 45 50 mpbid A ¬ 0 < i A + 1 A 2
52 lognegb i A + 1 A 2 i A + 1 A 2 0 i A + 1 A 2 + log i A + 1 A 2 = π
53 9 10 52 syl2anc A i A + 1 A 2 + log i A + 1 A 2 = π
54 rpgt0 i A + 1 A 2 + 0 < i A + 1 A 2
55 rpre i A + 1 A 2 + i A + 1 A 2
56 55 rered i A + 1 A 2 + i A + 1 A 2 = i A + 1 A 2
57 54 56 breqtrrd i A + 1 A 2 + 0 < i A + 1 A 2
58 53 57 syl6bir A log i A + 1 A 2 = π 0 < i A + 1 A 2
59 58 necon3bd A ¬ 0 < i A + 1 A 2 log i A + 1 A 2 π
60 51 59 mpd A log i A + 1 A 2 π
61 60 necomd A π log i A + 1 A 2
62 34 37 39 61 leneltd A log i A + 1 A 2 < π
63 ltneg log i A + 1 A 2 π log i A + 1 A 2 < π π < log i A + 1 A 2
64 34 36 63 sylancl A log i A + 1 A 2 < π π < log i A + 1 A 2
65 62 64 mpbid A π < log i A + 1 A 2
66 38 simpld A π < log i A + 1 A 2
67 36 renegcli π
68 ltle π log i A + 1 A 2 π < log i A + 1 A 2 π log i A + 1 A 2
69 67 34 68 sylancr A π < log i A + 1 A 2 π log i A + 1 A 2
70 66 69 mpd A π log i A + 1 A 2
71 lenegcon1 π log i A + 1 A 2 π log i A + 1 A 2 log i A + 1 A 2 π
72 36 34 71 sylancr A π log i A + 1 A 2 log i A + 1 A 2 π
73 70 72 mpbid A log i A + 1 A 2 π
74 67 rexri π *
75 elioc2 π * π log i A + 1 A 2 π π log i A + 1 A 2 π < log i A + 1 A 2 log i A + 1 A 2 π
76 74 36 75 mp2an log i A + 1 A 2 π π log i A + 1 A 2 π < log i A + 1 A 2 log i A + 1 A 2 π
77 35 65 73 76 syl3anbrc A log i A + 1 A 2 π π
78 33 77 eqeltrd A log i A + 1 A 2 π π
79 imf :
80 ffn : Fn
81 elpreima Fn log i A + 1 A 2 -1 π π log i A + 1 A 2 log i A + 1 A 2 π π
82 79 80 81 mp2b log i A + 1 A 2 -1 π π log i A + 1 A 2 log i A + 1 A 2 π π
83 32 78 82 sylanbrc A log i A + 1 A 2 -1 π π
84 logrn ran log = -1 π π
85 83 84 eleqtrrdi A log i A + 1 A 2 ran log
86 logeftb i A + 1 A 2 i A + 1 A 2 0 log i A + 1 A 2 ran log log i A + 1 A 2 = log i A + 1 A 2 e log i A + 1 A 2 = i A + 1 A 2
87 26 31 85 86 syl3anc A log i A + 1 A 2 = log i A + 1 A 2 e log i A + 1 A 2 = i A + 1 A 2
88 29 87 mpbird A log i A + 1 A 2 = log i A + 1 A 2
89 88 oveq2d A i log i A + 1 A 2 = i log i A + 1 A 2
90 negicn i
91 mulneg2 i log i A + 1 A 2 i log i A + 1 A 2 = i log i A + 1 A 2
92 90 11 91 sylancr A i log i A + 1 A 2 = i log i A + 1 A 2
93 89 92 eqtrd A i log i A + 1 A 2 = i log i A + 1 A 2
94 asinval A arcsin A = i log i A + 1 A 2
95 19 94 syl A arcsin A = i log i A + 1 A 2
96 asinval A arcsin A = i log i A + 1 A 2
97 96 negeqd A arcsin A = i log i A + 1 A 2
98 93 95 97 3eqtr4d A arcsin A = arcsin A