Metamath Proof Explorer


Theorem asinrebnd

Description: Bounds on the arcsine function. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asinrebnd A 1 1 arcsin A π 2 π 2

Proof

Step Hyp Ref Expression
1 resinf1o sin π 2 π 2 : π 2 π 2 1-1 onto 1 1
2 f1ocnv sin π 2 π 2 : π 2 π 2 1-1 onto 1 1 sin π 2 π 2 -1 : 1 1 1-1 onto π 2 π 2
3 f1of sin π 2 π 2 -1 : 1 1 1-1 onto π 2 π 2 sin π 2 π 2 -1 : 1 1 π 2 π 2
4 1 2 3 mp2b sin π 2 π 2 -1 : 1 1 π 2 π 2
5 4 ffvelrni A 1 1 sin π 2 π 2 -1 A π 2 π 2
6 5 fvresd A 1 1 sin π 2 π 2 sin π 2 π 2 -1 A = sin sin π 2 π 2 -1 A
7 f1ocnvfv2 sin π 2 π 2 : π 2 π 2 1-1 onto 1 1 A 1 1 sin π 2 π 2 sin π 2 π 2 -1 A = A
8 1 7 mpan A 1 1 sin π 2 π 2 sin π 2 π 2 -1 A = A
9 6 8 eqtr3d A 1 1 sin sin π 2 π 2 -1 A = A
10 9 fveq2d A 1 1 arcsin sin sin π 2 π 2 -1 A = arcsin A
11 reasinsin sin π 2 π 2 -1 A π 2 π 2 arcsin sin sin π 2 π 2 -1 A = sin π 2 π 2 -1 A
12 5 11 syl A 1 1 arcsin sin sin π 2 π 2 -1 A = sin π 2 π 2 -1 A
13 10 12 eqtr3d A 1 1 arcsin A = sin π 2 π 2 -1 A
14 13 5 eqeltrd A 1 1 arcsin A π 2 π 2