Metamath Proof Explorer


Theorem asinrecl

Description: The arcsine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asinrecl A 1 1 arcsin A

Proof

Step Hyp Ref Expression
1 halfpire π 2
2 1 renegcli π 2
3 iccssre π 2 π 2 π 2 π 2
4 2 1 3 mp2an π 2 π 2
5 asinrebnd A 1 1 arcsin A π 2 π 2
6 4 5 sselid A 1 1 arcsin A