Metamath Proof Explorer


Theorem asinsin

Description: The arcsine function composed with sin is equal to the identity. This plus sinasin allow us to view sin and arcsin as inverse operations to each other. For ease of use, we have not defined precisely the correct domain of correctness of this identity; in addition to the main region described here it is also true forsome points on the branch cuts, namely when A = (pi / 2 ) - i y for nonnegative real y and also symmetrically at A =i y - ( pi / 2 ) . In particular, when restricted to reals this identity extends to the closed interval [ -u (pi / 2 ) , ( pi / 2 ) ] , not just the open interval (see reasinsin ). (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asinsin A A π 2 π 2 arcsin sin A = A

Proof

Step Hyp Ref Expression
1 sincl A sin A
2 1 adantr A A π 2 π 2 sin A
3 asinval sin A arcsin sin A = i log i sin A + 1 sin A 2
4 2 3 syl A A π 2 π 2 arcsin sin A = i log i sin A + 1 sin A 2
5 ax-icn i
6 mulcl i sin A i sin A
7 5 2 6 sylancr A A π 2 π 2 i sin A
8 simpl A A π 2 π 2 A
9 mulcl i A i A
10 5 8 9 sylancr A A π 2 π 2 i A
11 efcl i A e i A
12 10 11 syl A A π 2 π 2 e i A
13 7 12 pncan3d A A π 2 π 2 i sin A + e i A - i sin A = e i A
14 12 7 subcld A A π 2 π 2 e i A i sin A
15 ax-1cn 1
16 2 sqcld A A π 2 π 2 sin A 2
17 subcl 1 sin A 2 1 sin A 2
18 15 16 17 sylancr A A π 2 π 2 1 sin A 2
19 binom2sub e i A i sin A e i A i sin A 2 = e i A 2 - 2 e i A i sin A + i sin A 2
20 12 7 19 syl2anc A A π 2 π 2 e i A i sin A 2 = e i A 2 - 2 e i A i sin A + i sin A 2
21 12 sqvald A A π 2 π 2 e i A 2 = e i A e i A
22 2cn 2
23 22 a1i A A π 2 π 2 2
24 23 12 7 mul12d A A π 2 π 2 2 e i A i sin A = e i A 2 i sin A
25 21 24 oveq12d A A π 2 π 2 e i A 2 2 e i A i sin A = e i A e i A e i A 2 i sin A
26 coscl A cos A
27 26 adantr A A π 2 π 2 cos A
28 subsq cos A i sin A cos A 2 i sin A 2 = cos A + i sin A cos A i sin A
29 27 7 28 syl2anc A A π 2 π 2 cos A 2 i sin A 2 = cos A + i sin A cos A i sin A
30 sqmul i sin A i sin A 2 = i 2 sin A 2
31 5 2 30 sylancr A A π 2 π 2 i sin A 2 = i 2 sin A 2
32 i2 i 2 = 1
33 32 oveq1i i 2 sin A 2 = -1 sin A 2
34 16 mulm1d A A π 2 π 2 -1 sin A 2 = sin A 2
35 33 34 syl5eq A A π 2 π 2 i 2 sin A 2 = sin A 2
36 31 35 eqtrd A A π 2 π 2 i sin A 2 = sin A 2
37 36 oveq2d A A π 2 π 2 cos A 2 i sin A 2 = cos A 2 sin A 2
38 27 sqcld A A π 2 π 2 cos A 2
39 38 16 subnegd A A π 2 π 2 cos A 2 sin A 2 = cos A 2 + sin A 2
40 38 16 addcomd A A π 2 π 2 cos A 2 + sin A 2 = sin A 2 + cos A 2
41 37 39 40 3eqtrd A A π 2 π 2 cos A 2 i sin A 2 = sin A 2 + cos A 2
42 efival A e i A = cos A + i sin A
43 42 adantr A A π 2 π 2 e i A = cos A + i sin A
44 7 2timesd A A π 2 π 2 2 i sin A = i sin A + i sin A
45 43 44 oveq12d A A π 2 π 2 e i A 2 i sin A = cos A + i sin A - i sin A + i sin A
46 27 7 7 pnpcan2d A A π 2 π 2 cos A + i sin A - i sin A + i sin A = cos A i sin A
47 45 46 eqtrd A A π 2 π 2 e i A 2 i sin A = cos A i sin A
48 43 47 oveq12d A A π 2 π 2 e i A e i A 2 i sin A = cos A + i sin A cos A i sin A
49 mulcl 2 i sin A 2 i sin A
50 22 7 49 sylancr A A π 2 π 2 2 i sin A
51 12 12 50 subdid A A π 2 π 2 e i A e i A 2 i sin A = e i A e i A e i A 2 i sin A
52 48 51 eqtr3d A A π 2 π 2 cos A + i sin A cos A i sin A = e i A e i A e i A 2 i sin A
53 29 41 52 3eqtr3d A A π 2 π 2 sin A 2 + cos A 2 = e i A e i A e i A 2 i sin A
54 sincossq A sin A 2 + cos A 2 = 1
55 54 adantr A A π 2 π 2 sin A 2 + cos A 2 = 1
56 25 53 55 3eqtr2d A A π 2 π 2 e i A 2 2 e i A i sin A = 1
57 56 36 oveq12d A A π 2 π 2 e i A 2 - 2 e i A i sin A + i sin A 2 = 1 + sin A 2
58 negsub 1 sin A 2 1 + sin A 2 = 1 sin A 2
59 15 16 58 sylancr A A π 2 π 2 1 + sin A 2 = 1 sin A 2
60 20 57 59 3eqtrd A A π 2 π 2 e i A i sin A 2 = 1 sin A 2
61 halfre 1 2
62 61 a1i A A π 2 π 2 1 2
63 negicn i
64 mulcl i A i A
65 63 8 64 sylancr A A π 2 π 2 i A
66 efcl i A e i A
67 65 66 syl A A π 2 π 2 e i A
68 12 67 addcld A A π 2 π 2 e i A + e i A
69 68 recld A A π 2 π 2 e i A + e i A
70 halfgt0 0 < 1 2
71 70 a1i A A π 2 π 2 0 < 1 2
72 12 recld A A π 2 π 2 e i A
73 67 recld A A π 2 π 2 e i A
74 asinsinlem A A π 2 π 2 0 < e i A
75 negcl A A
76 75 adantr A A π 2 π 2 A
77 reneg A A = A
78 77 adantr A A π 2 π 2 A = A
79 halfpire π 2
80 79 renegcli π 2
81 recl A A
82 iooneg π 2 π 2 A A π 2 π 2 A π 2 π 2
83 80 79 81 82 mp3an12i A A π 2 π 2 A π 2 π 2
84 83 biimpa A A π 2 π 2 A π 2 π 2
85 79 recni π 2
86 85 negnegi π 2 = π 2
87 86 oveq2i π 2 π 2 = π 2 π 2
88 84 87 eleqtrdi A A π 2 π 2 A π 2 π 2
89 78 88 eqeltrd A A π 2 π 2 A π 2 π 2
90 asinsinlem A A π 2 π 2 0 < e i A
91 76 89 90 syl2anc A A π 2 π 2 0 < e i A
92 mulneg12 i A i A = i A
93 5 8 92 sylancr A A π 2 π 2 i A = i A
94 93 fveq2d A A π 2 π 2 e i A = e i A
95 94 fveq2d A A π 2 π 2 e i A = e i A
96 91 95 breqtrrd A A π 2 π 2 0 < e i A
97 72 73 74 96 addgt0d A A π 2 π 2 0 < e i A + e i A
98 12 67 readdd A A π 2 π 2 e i A + e i A = e i A + e i A
99 97 98 breqtrrd A A π 2 π 2 0 < e i A + e i A
100 62 69 71 99 mulgt0d A A π 2 π 2 0 < 1 2 e i A + e i A
101 cosval A cos A = e i A + e i A 2
102 101 adantr A A π 2 π 2 cos A = e i A + e i A 2
103 2ne0 2 0
104 103 a1i A A π 2 π 2 2 0
105 68 23 104 divrec2d A A π 2 π 2 e i A + e i A 2 = 1 2 e i A + e i A
106 102 105 eqtrd A A π 2 π 2 cos A = 1 2 e i A + e i A
107 106 fveq2d A A π 2 π 2 cos A = 1 2 e i A + e i A
108 remul2 1 2 e i A + e i A 1 2 e i A + e i A = 1 2 e i A + e i A
109 61 68 108 sylancr A A π 2 π 2 1 2 e i A + e i A = 1 2 e i A + e i A
110 107 109 eqtrd A A π 2 π 2 cos A = 1 2 e i A + e i A
111 100 110 breqtrrd A A π 2 π 2 0 < cos A
112 27 7 43 mvrraddd A A π 2 π 2 e i A i sin A = cos A
113 112 fveq2d A A π 2 π 2 e i A i sin A = cos A
114 111 113 breqtrrd A A π 2 π 2 0 < e i A i sin A
115 14 18 60 114 eqsqrt2d A A π 2 π 2 e i A i sin A = 1 sin A 2
116 115 oveq2d A A π 2 π 2 i sin A + e i A - i sin A = i sin A + 1 sin A 2
117 13 116 eqtr3d A A π 2 π 2 e i A = i sin A + 1 sin A 2
118 117 fveq2d A A π 2 π 2 log e i A = log i sin A + 1 sin A 2
119 pire π
120 119 renegcli π
121 120 a1i A A π 2 π 2 π
122 80 a1i A A π 2 π 2 π 2
123 elioore A π 2 π 2 A
124 123 adantl A A π 2 π 2 A
125 pirp π +
126 rphalflt π + π 2 < π
127 125 126 ax-mp π 2 < π
128 79 119 ltnegi π 2 < π π < π 2
129 127 128 mpbi π < π 2
130 129 a1i A A π 2 π 2 π < π 2
131 eliooord A π 2 π 2 π 2 < A A < π 2
132 131 adantl A A π 2 π 2 π 2 < A A < π 2
133 132 simpld A A π 2 π 2 π 2 < A
134 121 122 124 130 133 lttrd A A π 2 π 2 π < A
135 imre i A i A = i i A
136 10 135 syl A A π 2 π 2 i A = i i A
137 5 5 mulneg1i i i = i i
138 ixi i i = 1
139 138 negeqi i i = -1
140 15 negnegi -1 = 1
141 137 139 140 3eqtri i i = 1
142 141 oveq1i i i A = 1 A
143 63 a1i A A π 2 π 2 i
144 5 a1i A A π 2 π 2 i
145 143 144 8 mulassd A A π 2 π 2 i i A = i i A
146 mulid2 A 1 A = A
147 146 adantr A A π 2 π 2 1 A = A
148 142 145 147 3eqtr3a A A π 2 π 2 i i A = A
149 148 fveq2d A A π 2 π 2 i i A = A
150 136 149 eqtrd A A π 2 π 2 i A = A
151 134 150 breqtrrd A A π 2 π 2 π < i A
152 119 a1i A A π 2 π 2 π
153 79 a1i A A π 2 π 2 π 2
154 132 simprd A A π 2 π 2 A < π 2
155 127 a1i A A π 2 π 2 π 2 < π
156 124 153 152 154 155 lttrd A A π 2 π 2 A < π
157 124 152 156 ltled A A π 2 π 2 A π
158 150 157 eqbrtrd A A π 2 π 2 i A π
159 ellogrn i A ran log i A π < i A i A π
160 10 151 158 159 syl3anbrc A A π 2 π 2 i A ran log
161 logef i A ran log log e i A = i A
162 160 161 syl A A π 2 π 2 log e i A = i A
163 118 162 eqtr3d A A π 2 π 2 log i sin A + 1 sin A 2 = i A
164 163 oveq2d A A π 2 π 2 i log i sin A + 1 sin A 2 = i i A
165 4 164 148 3eqtrd A A π 2 π 2 arcsin sin A = A