Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
asinsinb
Next ⟩
acoscosb
Metamath Proof Explorer
Ascii
Unicode
Theorem
asinsinb
Description:
Relationship between sine and arcsine.
(Contributed by
Mario Carneiro
, 2-Apr-2015)
Ref
Expression
Assertion
asinsinb
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
ℜ
⁡
B
∈
−
π
2
π
2
→
arcsin
⁡
A
=
B
↔
sin
⁡
B
=
A
Proof
Step
Hyp
Ref
Expression
1
sinasin
⊢
A
∈
ℂ
→
sin
⁡
arcsin
⁡
A
=
A
2
1
3ad2ant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
ℜ
⁡
B
∈
−
π
2
π
2
→
sin
⁡
arcsin
⁡
A
=
A
3
fveqeq2
⊢
arcsin
⁡
A
=
B
→
sin
⁡
arcsin
⁡
A
=
A
↔
sin
⁡
B
=
A
4
2
3
syl5ibcom
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
ℜ
⁡
B
∈
−
π
2
π
2
→
arcsin
⁡
A
=
B
→
sin
⁡
B
=
A
5
asinsin
⊢
B
∈
ℂ
∧
ℜ
⁡
B
∈
−
π
2
π
2
→
arcsin
⁡
sin
⁡
B
=
B
6
5
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
ℜ
⁡
B
∈
−
π
2
π
2
→
arcsin
⁡
sin
⁡
B
=
B
7
fveqeq2
⊢
sin
⁡
B
=
A
→
arcsin
⁡
sin
⁡
B
=
B
↔
arcsin
⁡
A
=
B
8
6
7
syl5ibcom
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
ℜ
⁡
B
∈
−
π
2
π
2
→
sin
⁡
B
=
A
→
arcsin
⁡
A
=
B
9
4
8
impbid
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
ℜ
⁡
B
∈
−
π
2
π
2
→
arcsin
⁡
A
=
B
↔
sin
⁡
B
=
A