Metamath Proof Explorer


Theorem asinsinb

Description: Relationship between sine and arcsine. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asinsinb A B B π 2 π 2 arcsin A = B sin B = A

Proof

Step Hyp Ref Expression
1 sinasin A sin arcsin A = A
2 1 3ad2ant1 A B B π 2 π 2 sin arcsin A = A
3 fveqeq2 arcsin A = B sin arcsin A = A sin B = A
4 2 3 syl5ibcom A B B π 2 π 2 arcsin A = B sin B = A
5 asinsin B B π 2 π 2 arcsin sin B = B
6 5 3adant1 A B B π 2 π 2 arcsin sin B = B
7 fveqeq2 sin B = A arcsin sin B = B arcsin A = B
8 6 7 syl5ibcom A B B π 2 π 2 sin B = A arcsin A = B
9 4 8 impbid A B B π 2 π 2 arcsin A = B sin B = A