Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
asinval
Next ⟩
acosval
Metamath Proof Explorer
Ascii
Unicode
Theorem
asinval
Description:
Value of the arcsin function.
(Contributed by
Mario Carneiro
, 31-Mar-2015)
Ref
Expression
Assertion
asinval
⊢
A
∈
ℂ
→
arcsin
⁡
A
=
−
i
⁢
log
⁡
i
⁢
A
+
1
−
A
2
Proof
Step
Hyp
Ref
Expression
1
oveq2
⊢
x
=
A
→
i
⁢
x
=
i
⁢
A
2
oveq1
⊢
x
=
A
→
x
2
=
A
2
3
2
oveq2d
⊢
x
=
A
→
1
−
x
2
=
1
−
A
2
4
3
fveq2d
⊢
x
=
A
→
1
−
x
2
=
1
−
A
2
5
1
4
oveq12d
⊢
x
=
A
→
i
⁢
x
+
1
−
x
2
=
i
⁢
A
+
1
−
A
2
6
5
fveq2d
⊢
x
=
A
→
log
⁡
i
⁢
x
+
1
−
x
2
=
log
⁡
i
⁢
A
+
1
−
A
2
7
6
oveq2d
⊢
x
=
A
→
−
i
⁢
log
⁡
i
⁢
x
+
1
−
x
2
=
−
i
⁢
log
⁡
i
⁢
A
+
1
−
A
2
8
df-asin
⊢
arcsin
=
x
∈
ℂ
⟼
−
i
⁢
log
⁡
i
⁢
x
+
1
−
x
2
9
ovex
⊢
−
i
⁢
log
⁡
i
⁢
A
+
1
−
A
2
∈
V
10
7
8
9
fvmpt
⊢
A
∈
ℂ
→
arcsin
⁡
A
=
−
i
⁢
log
⁡
i
⁢
A
+
1
−
A
2