Metamath Proof Explorer


Theorem asinval

Description: Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion asinval A arcsin A = i log i A + 1 A 2

Proof

Step Hyp Ref Expression
1 oveq2 x = A i x = i A
2 oveq1 x = A x 2 = A 2
3 2 oveq2d x = A 1 x 2 = 1 A 2
4 3 fveq2d x = A 1 x 2 = 1 A 2
5 1 4 oveq12d x = A i x + 1 x 2 = i A + 1 A 2
6 5 fveq2d x = A log i x + 1 x 2 = log i A + 1 A 2
7 6 oveq2d x = A i log i x + 1 x 2 = i log i A + 1 A 2
8 df-asin arcsin = x i log i x + 1 x 2
9 ovex i log i A + 1 A 2 V
10 7 8 9 fvmpt A arcsin A = i log i A + 1 A 2