Metamath Proof Explorer


Theorem aspid

Description: The algebraic span of a subalgebra is itself. ( spanid analog.) (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a A = AlgSpan W
aspval.v V = Base W
aspval.l L = LSubSp W
Assertion aspid W AssAlg S SubRing W S L A S = S

Proof

Step Hyp Ref Expression
1 aspval.a A = AlgSpan W
2 aspval.v V = Base W
3 aspval.l L = LSubSp W
4 simp1 W AssAlg S SubRing W S L W AssAlg
5 2 subrgss S SubRing W S V
6 5 3ad2ant2 W AssAlg S SubRing W S L S V
7 1 2 3 aspval W AssAlg S V A S = t SubRing W L | S t
8 4 6 7 syl2anc W AssAlg S SubRing W S L A S = t SubRing W L | S t
9 3simpc W AssAlg S SubRing W S L S SubRing W S L
10 elin S SubRing W L S SubRing W S L
11 9 10 sylibr W AssAlg S SubRing W S L S SubRing W L
12 intmin S SubRing W L t SubRing W L | S t = S
13 11 12 syl W AssAlg S SubRing W S L t SubRing W L | S t = S
14 8 13 eqtrd W AssAlg S SubRing W S L A S = S