Metamath Proof Explorer


Theorem aspss

Description: Span preserves subset ordering. ( spanss analog.) (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a A = AlgSpan W
aspval.v V = Base W
Assertion aspss W AssAlg S V T S A T A S

Proof

Step Hyp Ref Expression
1 aspval.a A = AlgSpan W
2 aspval.v V = Base W
3 simpl3 W AssAlg S V T S t SubRing W LSubSp W T S
4 sstr2 T S S t T t
5 3 4 syl W AssAlg S V T S t SubRing W LSubSp W S t T t
6 5 ss2rabdv W AssAlg S V T S t SubRing W LSubSp W | S t t SubRing W LSubSp W | T t
7 intss t SubRing W LSubSp W | S t t SubRing W LSubSp W | T t t SubRing W LSubSp W | T t t SubRing W LSubSp W | S t
8 6 7 syl W AssAlg S V T S t SubRing W LSubSp W | T t t SubRing W LSubSp W | S t
9 simp1 W AssAlg S V T S W AssAlg
10 simp3 W AssAlg S V T S T S
11 simp2 W AssAlg S V T S S V
12 10 11 sstrd W AssAlg S V T S T V
13 eqid LSubSp W = LSubSp W
14 1 2 13 aspval W AssAlg T V A T = t SubRing W LSubSp W | T t
15 9 12 14 syl2anc W AssAlg S V T S A T = t SubRing W LSubSp W | T t
16 1 2 13 aspval W AssAlg S V A S = t SubRing W LSubSp W | S t
17 16 3adant3 W AssAlg S V T S A S = t SubRing W LSubSp W | S t
18 8 15 17 3sstr4d W AssAlg S V T S A T A S