Metamath Proof Explorer


Theorem aspssid

Description: A set of vectors is a subset of its span. ( spanss2 analog.) (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a A = AlgSpan W
aspval.v V = Base W
Assertion aspssid W AssAlg S V S A S

Proof

Step Hyp Ref Expression
1 aspval.a A = AlgSpan W
2 aspval.v V = Base W
3 ssintub S t SubRing W LSubSp W | S t
4 eqid LSubSp W = LSubSp W
5 1 2 4 aspval W AssAlg S V A S = t SubRing W LSubSp W | S t
6 3 5 sseqtrrid W AssAlg S V S A S