Metamath Proof Explorer


Theorem aspsubrg

Description: The algebraic span of a set of vectors is a subring of the algebra. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a A = AlgSpan W
aspval.v V = Base W
Assertion aspsubrg W AssAlg S V A S SubRing W

Proof

Step Hyp Ref Expression
1 aspval.a A = AlgSpan W
2 aspval.v V = Base W
3 eqid LSubSp W = LSubSp W
4 1 2 3 aspval W AssAlg S V A S = t SubRing W LSubSp W | S t
5 ssrab2 t SubRing W LSubSp W | S t SubRing W LSubSp W
6 inss1 SubRing W LSubSp W SubRing W
7 5 6 sstri t SubRing W LSubSp W | S t SubRing W
8 fvex A S V
9 4 8 eqeltrrdi W AssAlg S V t SubRing W LSubSp W | S t V
10 intex t SubRing W LSubSp W | S t t SubRing W LSubSp W | S t V
11 9 10 sylibr W AssAlg S V t SubRing W LSubSp W | S t
12 subrgint t SubRing W LSubSp W | S t SubRing W t SubRing W LSubSp W | S t t SubRing W LSubSp W | S t SubRing W
13 7 11 12 sylancr W AssAlg S V t SubRing W LSubSp W | S t SubRing W
14 4 13 eqeltrd W AssAlg S V A S SubRing W