| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aspval.a |  | 
						
							| 2 |  | aspval.v |  | 
						
							| 3 |  | aspval.l |  | 
						
							| 4 |  | fveq2 |  | 
						
							| 5 | 4 2 | eqtr4di |  | 
						
							| 6 | 5 | pweqd |  | 
						
							| 7 |  | fveq2 |  | 
						
							| 8 |  | fveq2 |  | 
						
							| 9 | 8 3 | eqtr4di |  | 
						
							| 10 | 7 9 | ineq12d |  | 
						
							| 11 | 10 | rabeqdv |  | 
						
							| 12 | 11 | inteqd |  | 
						
							| 13 | 6 12 | mpteq12dv |  | 
						
							| 14 |  | df-asp |  | 
						
							| 15 | 2 | fvexi |  | 
						
							| 16 | 15 | pwex |  | 
						
							| 17 | 16 | mptex |  | 
						
							| 18 | 13 14 17 | fvmpt |  | 
						
							| 19 | 1 18 | eqtrid |  | 
						
							| 20 | 19 | fveq1d |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | sseq1 |  | 
						
							| 24 | 23 | rabbidv |  | 
						
							| 25 | 24 | inteqd |  | 
						
							| 26 |  | simpr |  | 
						
							| 27 | 15 | elpw2 |  | 
						
							| 28 | 26 27 | sylibr |  | 
						
							| 29 |  | assaring |  | 
						
							| 30 | 2 | subrgid |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 |  | assalmod |  | 
						
							| 33 | 2 3 | lss1 |  | 
						
							| 34 | 32 33 | syl |  | 
						
							| 35 | 31 34 | elind |  | 
						
							| 36 |  | sseq2 |  | 
						
							| 37 | 36 | rspcev |  | 
						
							| 38 | 35 37 | sylan |  | 
						
							| 39 |  | intexrab |  | 
						
							| 40 | 38 39 | sylib |  | 
						
							| 41 | 22 25 28 40 | fvmptd3 |  | 
						
							| 42 | 21 41 | eqtrd |  |