Metamath Proof Explorer


Theorem aspval

Description: Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a A = AlgSpan W
aspval.v V = Base W
aspval.l L = LSubSp W
Assertion aspval W AssAlg S V A S = t SubRing W L | S t

Proof

Step Hyp Ref Expression
1 aspval.a A = AlgSpan W
2 aspval.v V = Base W
3 aspval.l L = LSubSp W
4 fveq2 w = W Base w = Base W
5 4 2 eqtr4di w = W Base w = V
6 5 pweqd w = W 𝒫 Base w = 𝒫 V
7 fveq2 w = W SubRing w = SubRing W
8 fveq2 w = W LSubSp w = LSubSp W
9 8 3 eqtr4di w = W LSubSp w = L
10 7 9 ineq12d w = W SubRing w LSubSp w = SubRing W L
11 10 rabeqdv w = W t SubRing w LSubSp w | s t = t SubRing W L | s t
12 11 inteqd w = W t SubRing w LSubSp w | s t = t SubRing W L | s t
13 6 12 mpteq12dv w = W s 𝒫 Base w t SubRing w LSubSp w | s t = s 𝒫 V t SubRing W L | s t
14 df-asp AlgSpan = w AssAlg s 𝒫 Base w t SubRing w LSubSp w | s t
15 2 fvexi V V
16 15 pwex 𝒫 V V
17 16 mptex s 𝒫 V t SubRing W L | s t V
18 13 14 17 fvmpt W AssAlg AlgSpan W = s 𝒫 V t SubRing W L | s t
19 1 18 eqtrid W AssAlg A = s 𝒫 V t SubRing W L | s t
20 19 fveq1d W AssAlg A S = s 𝒫 V t SubRing W L | s t S
21 20 adantr W AssAlg S V A S = s 𝒫 V t SubRing W L | s t S
22 eqid s 𝒫 V t SubRing W L | s t = s 𝒫 V t SubRing W L | s t
23 sseq1 s = S s t S t
24 23 rabbidv s = S t SubRing W L | s t = t SubRing W L | S t
25 24 inteqd s = S t SubRing W L | s t = t SubRing W L | S t
26 simpr W AssAlg S V S V
27 15 elpw2 S 𝒫 V S V
28 26 27 sylibr W AssAlg S V S 𝒫 V
29 assaring W AssAlg W Ring
30 2 subrgid W Ring V SubRing W
31 29 30 syl W AssAlg V SubRing W
32 assalmod W AssAlg W LMod
33 2 3 lss1 W LMod V L
34 32 33 syl W AssAlg V L
35 31 34 elind W AssAlg V SubRing W L
36 sseq2 t = V S t S V
37 36 rspcev V SubRing W L S V t SubRing W L S t
38 35 37 sylan W AssAlg S V t SubRing W L S t
39 intexrab t SubRing W L S t t SubRing W L | S t V
40 38 39 sylib W AssAlg S V t SubRing W L | S t V
41 22 25 28 40 fvmptd3 W AssAlg S V s 𝒫 V t SubRing W L | s t S = t SubRing W L | S t
42 21 41 eqtrd W AssAlg S V A S = t SubRing W L | S t