Description: Left- and right-associative property of an associative algebra. Notice that the scalars are commuted! (Contributed by AV, 14-Aug-2019) (Proof shortened by Zhi Wang, 11-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | assa2ass.v | |
|
| assa2ass.f | |
||
| assa2ass.b | |
||
| assa2ass.m | |
||
| assa2ass.s | |
||
| assa2ass.t | |
||
| Assertion | assa2ass | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assa2ass.v | |
|
| 2 | assa2ass.f | |
|
| 3 | assa2ass.b | |
|
| 4 | assa2ass.m | |
|
| 5 | assa2ass.s | |
|
| 6 | assa2ass.t | |
|
| 7 | simp1 | |
|
| 8 | simpr | |
|
| 9 | 8 | 3ad2ant2 | |
| 10 | assalmod | |
|
| 11 | simpl | |
|
| 12 | simpl | |
|
| 13 | 1 2 5 3 | lmodvscl | |
| 14 | 10 11 12 13 | syl3an | |
| 15 | simpr | |
|
| 16 | 15 | 3ad2ant3 | |
| 17 | 1 2 3 5 6 | assaassr | |
| 18 | 7 9 14 16 17 | syl13anc | |
| 19 | 1 2 3 5 6 | assaass | |
| 20 | 19 | eqcomd | |
| 21 | 7 9 14 16 20 | syl13anc | |
| 22 | 10 | 3ad2ant1 | |
| 23 | 11 | 3ad2ant2 | |
| 24 | 12 | 3ad2ant3 | |
| 25 | 1 2 5 3 4 | lmodvsass | |
| 26 | 25 | eqcomd | |
| 27 | 26 | oveq1d | |
| 28 | 22 9 23 24 27 | syl13anc | |
| 29 | 2 | assasca | |
| 30 | 29 | adantr | |
| 31 | 8 | adantl | |
| 32 | 11 | adantl | |
| 33 | 3 4 30 31 32 | ringcld | |
| 34 | 33 | 3adant3 | |
| 35 | 1 2 3 5 6 | assaass | |
| 36 | 7 34 24 16 35 | syl13anc | |
| 37 | 28 36 | eqtrd | |
| 38 | 18 21 37 | 3eqtrd | |