Metamath Proof Explorer


Theorem assamulgscmlem1

Description: Lemma 1 for assamulgscm (induction base). (Contributed by AV, 26-Aug-2019)

Ref Expression
Hypotheses assamulgscm.v V = Base W
assamulgscm.f F = Scalar W
assamulgscm.b B = Base F
assamulgscm.s · ˙ = W
assamulgscm.g G = mulGrp F
assamulgscm.p × ˙ = G
assamulgscm.h H = mulGrp W
assamulgscm.e E = H
Assertion assamulgscmlem1 A B X V W AssAlg 0 E A · ˙ X = 0 × ˙ A · ˙ 0 E X

Proof

Step Hyp Ref Expression
1 assamulgscm.v V = Base W
2 assamulgscm.f F = Scalar W
3 assamulgscm.b B = Base F
4 assamulgscm.s · ˙ = W
5 assamulgscm.g G = mulGrp F
6 assamulgscm.p × ˙ = G
7 assamulgscm.h H = mulGrp W
8 assamulgscm.e E = H
9 assalmod W AssAlg W LMod
10 assaring W AssAlg W Ring
11 eqid 1 W = 1 W
12 1 11 ringidcl W Ring 1 W V
13 10 12 syl W AssAlg 1 W V
14 eqid 1 F = 1 F
15 1 2 4 14 lmodvs1 W LMod 1 W V 1 F · ˙ 1 W = 1 W
16 15 eqcomd W LMod 1 W V 1 W = 1 F · ˙ 1 W
17 9 13 16 syl2anc W AssAlg 1 W = 1 F · ˙ 1 W
18 17 adantl A B X V W AssAlg 1 W = 1 F · ˙ 1 W
19 9 adantl A B X V W AssAlg W LMod
20 simpll A B X V W AssAlg A B
21 simplr A B X V W AssAlg X V
22 1 2 4 3 lmodvscl W LMod A B X V A · ˙ X V
23 19 20 21 22 syl3anc A B X V W AssAlg A · ˙ X V
24 7 1 mgpbas V = Base H
25 7 11 ringidval 1 W = 0 H
26 24 25 8 mulg0 A · ˙ X V 0 E A · ˙ X = 1 W
27 23 26 syl A B X V W AssAlg 0 E A · ˙ X = 1 W
28 5 3 mgpbas B = Base G
29 5 14 ringidval 1 F = 0 G
30 28 29 6 mulg0 A B 0 × ˙ A = 1 F
31 20 30 syl A B X V W AssAlg 0 × ˙ A = 1 F
32 24 25 8 mulg0 X V 0 E X = 1 W
33 21 32 syl A B X V W AssAlg 0 E X = 1 W
34 31 33 oveq12d A B X V W AssAlg 0 × ˙ A · ˙ 0 E X = 1 F · ˙ 1 W
35 18 27 34 3eqtr4d A B X V W AssAlg 0 E A · ˙ X = 0 × ˙ A · ˙ 0 E X